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A B S T R A C T

We investigated the stress response of hydrogels to multiple and consecutive planar extensions using the stan-
dard Flory–Rehner thermodynamics. We show explicitly how the stress relaxation at a given extension depends
on both the number and magnitude of incremental steps that lead to such extension. These results have the
potential to impact the design of hydrogel-based actuators where a prescribed extension can be achieved through
several consecutive extensions.

1. Introduction

Hydrogels are soft materials made of cross–linked networks of hy-
drophilic polymers that swell in water. The degree of swelling depends
on the amount of water uptake; for a given gel, the water uptake is
determined by the chemical potential of the environment and by the
applied loads. It is well known that hydrogels swell more when they are
under tension than when they are in a stress-free state or are under
compression. Moreover, under tension at a constant strain, the stress
within the gel decreases significantly due to the water uptake that
creates an increase in the gel volume as described elsewhere (Takigawa
et al., 1993; Urayama et al., 1994; Hong et al., 2009; Yohsuke et al.,
2011; Urayama and Takigawa, 2012; Fujine et al., 2015). In the above
cited experimental studies, the hydrogel is stretched and the stress re-
laxation is computed as the difference between the instantaneous stress,
that is the stress of a gel treated as an incompressible elastic solid before
diffusion starts, and the steady stress, that is the stress when the balance
between the chemical potentials of the solvent inside and outside the
gel is achieved. In particular, in Fujine et al. (2015) biaxial tests from a
pre-stretched configuration are also discussed.

Throughout this manuscript, the instantaneous stress response at
time scales prior to diffusion and the long term stress response at time
scales where diffusion has completed its action will be termed the fast
stress and slow stress, respectively. This fast and slow response regimes
are similar to those observed in viscoelastic materials even though the
stress relaxation mechanism in these materials is typically different
(Wineman and Rajagopal, 1992).

Strain-driven swelling and stress reduction under uniaxial and
biaxial stretching are investigated thoroughly for isotropic gels in
Takigawa et al. (1993), Urayama et al. (1994), Yohsuke et al. (2011),
Urayama and Takigawa (2012) and Fujine et al. (2015), whereas the
fast and slow stress responses of anisotropic gels under uniaxial
stretching are studied in Nardinocchi et al. (2015a) and
Nardinocchi and Teresi (2016). The stress relaxation and change in
volume of the gels have been shown to depend on the type of biaxial
deformation (Fujine et al., 2015). However, while there are recent
studies on the coupling between biaxial deformations and swelling
(Pence, 0000; Selvadurai and Suvorov, 2017) there are currently no
studies on the effect of multiple and consecutive planar extensions on
the mechanical behavior of gels despite the relevance of such de-
formations in real applications for gels as soft actuators.

In this manuscript, we analyze the stress response of gels under
incremental extensions within the context of the standard Flory–Rehner
thermodynamics modeling framework. Precisely, we consider three
types of deformations: planar, equibiaxial, and unequal biaxial exten-
sions. We define the incremental extension as a series of extensions and,
at each extension increment, we compute the fast stress response of the
hydrogel and then we evaluate the subsequent stress reduction due to
the diffusion.

The manuscript is structured as follows. In Section 2, we briefly
present the main characteristics of the stress-diffusion modeling fra-
mework. In Section 3, we introduce the specific equations that describe
the response of gels to incremental extensions. Moreover, we explicitly
evaluate the stress reduction due to a single extension and the stress
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reduction due to two consecutive extensions that lead to the same total
elongation. In Section 4, we consider different types of planar extesions
and discuss the corresponding responses in terms of stresses and
changes in volume.

2. Background

We consider the multiphysics modeling framework discussed in
Lucantonio et al. (2013). In Lucantonio et al. (2013), the balance
equations and constitutive equations were presented in detail and the
evolution equations governing swelling and de–swelling in gels were
derived. We find useful to re-introduce here some key states of a body
made of gel: a dry state, ! ,d with a volume Vd, a stress–free swollen
state, ! ,o with a volume Vo, a pre-stretched state, ! ,p with volume Vp,
and an actual steady state, ! , with volume V determined by mechanical
and chemical stimuli (Fig. 1).

The process that leads one body to change state may be complex and
can be studied by using numerical methods (Bertrand et al., 2016;
Curatolo et al., 2017). However, the stress–free state !o as well as the
pre-stretched state !p can be easily determined from the hydration and
deformation states. Likewise, under certain loads and constraints, the
actual steady state ! can easily characterized when it is attained from
!p through a homogenous field of deformation (which implies a
homogeneous state of hydration). In these cases, chemical and me-
chanical boundary conditions completely determine the actual state of
the gel, once the constitutive equations are selected (Nardinocchi and
Teresi, 2016).

2.1. Constitutive theory

The constitutive equations for the stress Sd ([Sd]=Pa=J/m3) re-
lative to the dry configuration !d and for the chemical potential μ ([μ]
=J/mol) are derived from the theoretical framework proposed and
discussed in Nardinocchi et al. (2015a, 2015b) and Nardinocchi and
Teresi (2016), based on the Flory–Rehner thermodynamic model.

The free energy per unit dry volume, ψ, is assumed to be the sum of
an elastic free energy ψe, and a polymer–solvent mixing free energy ψm.
The former depends on the deformation gradient Fd that defines the
deformation from the initial dry configuration of the gel (Fig. 1) and the
latter depends on the molar solvent concentration cd per unit dry vo-
lume ( =c[ ]d mol/m3). It is assumed that changes in volume are only due
to solvent absorption or release. Then, the free energy ψ can be as
follows:

= + − −ψ c p ψ ψ c p J J cF F( , , ) ( ) ( ) ( ^ ( )) .d d e d m d d d (2.1)

where p serves to enforce the volumetric constraint according to which
the volume change due to the deformation, =J Fdet ,d d is equal to the
volume change due to solvent absorption or release, = +J c c^ ( ) 1 Ωd d.
This requires that

= + cFdet 1 Ω ,d d (2.2)

where Ω ( =[Ω] m3/mol) is the solvent molar volume. The nominal stress
Sd and the chemical potential μ are derived from thermodynamics
principles:

= − = ∂∂−p
ψS S F F F S F F

^ ( ) (det ) with ^ ( )d d d d d
T

d d
e

d (2.3)

and

= + = ∂∂µ µ c p µ c ψ
c

^ ( ) Ω with ^ ( ) .d d
m

d (2.4)

As standard in Flory–Rehner theory, we assume that the gel is isotropic
and undergoes large deformations so that it can be described by the
following elastic free energy:

= −ψ GF C I( )
2

( · 3),e d d (2.5)

where G ( =G[ ] J/m3) is the shear modulus of the dry polymer and=C F Fd d
T

d. From (2.3)2 and (2.5), we can easily compute the stress
S F^ ( )d d relative to the dry configuration and then compute the corre-
sponding Cauchy stress T as

= − =p
J

T T F I T F S F F^ ( ) , ^ ( ) 1 ^ ( ) .d d
d

d d d
T

(2.6)

Following Flory and Rehner (1943a,b), we also prescribe the following
polymer–solvent mixing energy:

=ψ c RT h c( )
Ω

( ) ,m d d (2.7)

with

= + + + =h c c c
c

χ c
c

h( ) Ω log Ω
1 Ω

Ω
1 Ω

, [ ] 1 ,d d
d

d

d

d (2.8)

where R ( =R[ ] J/(K mol)), T ( =T[ ] K), and χ are the universal gas con-
stant, the temperature, and the Flory parameter, respectively. From
(2.4)2, (2.7), and (2.8) we can easily find the chemical potential µ c^ ( )d .
By exploiting the volumetric constraint (2.2), the chemical potential
can be rewritten as function of Jd with a slight abuse of notation:

⎜ ⎟= = ⎛⎝ − + + ⎞⎠µ c µ J RT J
J J

χ
J

^ ( ) ^ ( ) log 1 1 .d d
d

d d d
2 (2.9)

The material parameters are assumed to have values that are typical for
soft hydrogels:= = = == − R T χ GΩ 1.8·10 m /mol, 8.314 J/(K mol), 293 K, 0.5,

10 Pa .

5 3

5 (2.10)

2.2. Stress-free swollen state

Given the dry state !d of a gel, the stress–free swollen state !o is
completely defined by the value of the chemical potential μe of the
solvent in which the gel is immersed through the mechanical and
chemical balance laws: =S 0d and =µ µe. More precisely, the stress-
free swollen state can be described by the homogeneous deformation
field = λF I,o o where λo is the stretch ratio. Hence, from the Eqs. (2.3)
and (2.5), the stress Sd that corresponds to =F Fd o is = −Gλ pλS I( ) ,d o o

2

and the stress-free condition implies that =p G λ/ o. Substituting p in the
relation for the chemical potential (2.4) yields a nonlinear equation
relating μe and λo:

+ = =µ J G
λ

µ J λ^ ( ) Ω , with .o
o

e o o
3

(2.11)

The volume of the swollen gel is then =V J Vo o d; the values (2.10) yields
Jo≃ 10.2. If we assume that the gel in our dry state !d is a parallele-
piped with sides Ld, Ld, and hd, the gel in the stress-free swollen state !o

Fig. 1. Sketch of the deformation maps relating the dry state, ! ,d the stress–free
swollen state, ! ,o the pre-stretched state, ! ,p and the current state, ! .
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is still a parallelepiped but has sides =L λ L ,o o d =L λ L ,o o d and=h λ ho o d. For large deformation (1/Jo→ 0), Eq. (2.9) can be ap-
proximated to

≃ −µ J RT χ
J

^ ( ) ( 1/2) 1 ,o
o
2 (2.12)

so that Eq. (2.11) can be written as

⎜ ⎟− = ⎛⎝ − ⎞⎠RT χ
µ G

λ
J

Ω
( 1/2)

Ω
.e

o
o
2

(2.13)

Eq. (2.13) provides an explicit estimate of the quantity −RT χ( 1/2) in
terms of the chemical potential μe of the solvent in which the gel is
immersed and the stretch λo due to stress-free swelling.

2.3. Pre-stretched state

We introduce a pre-stretched configuration of the gel since such
configuration is usually the configuration from which the elastic stress-
stretch and stress relaxation data of gels are collected via mechanical
tests (Fujine et al., 2015). The introduction of this configuration is
necessary for determining the stress response due to unequal planar
extensions as discussed in Section 3. The pre-stretched configuration !p
of the gel differs from the stress-free configuration !o and is described
by the deformation gradient =F F Fd p o as shown in Fig. 1.

We consider a parallelepiped-shaped gel of side lengths Lo, Lo, and
ho. The three sides of this parallelepiped are aligned with the unit
vectors of the standard basis e1, e2, and e3 in the !p configuration and
the gel is extended in the plane defined by e1 and e2. We assume that
the gel is deformed from the stress-free swollen state !o by applying a
stretch λpα ( =α 1, 2) along eα so, in the pre-stretched state, the lengths
of two sides of the parallelepiped are=L λ L .pα pα o (2.14)

The thickness hp in the pre-stretched state is determined by the balance
of forces and solvent concentration through the boundary conditions on
the stress and the chemical potential, that is: = =σ Te e· 03 3 3 and=µ µe. For example, for isotropic gels, Eqs. (2.3), (2.5), and (2.6), lead
to

= − = =σ G
J

λ p J J J J λ λ λwith and
d

d d p o p p p p3 3
2

1 2 3 (2.15)

and =λ λ λd p o3 3 . Therefore, since =σ 0,3 it follows

=p G
J

λ .
d

d3
2

(2.16)

Substituting this value of p into Eqs. (2.4), from the chemical balance
law it follows that

+ =µ J G
J

λ µ^ ( ) Ω .d
d

d e3
2

(2.17)

The above equation provides the value of λp3 when the balance of the
chemical potentials of the solvent inside and outside the gel is achieved.
Consequently, the thickness hp of the gel can be computed as =h λ hp p o3 .

The (plane) stress of the gel in the !p configuration is described by
the only non-zero axial components of the Cauchy stress T:

= − =σ G
J

λ p λ λ λ, with ,α
d

dα dα pα o
2

(2.18)

which can be rewritten using Eq. (2.16) as

⎜ ⎟

⎜ ⎟

= ⎛⎝ − ⎞⎠
= ⎛⎝ − ⎞⎠

σ G
λ

λ
λ λ

λ
λ λ

σ G
λ

λ
λ λ

λ
λ λ

,

.

o

p

p p

p

p p

o

p

p p

p

p p

1
1

2 3

3

1 2

2
2

1 3

3

1 2 (2.19)

We explicitly note that when =λ 1,pα Eq. (2.15) gives =λ 1p3 and

Eqs. (2.19) lead to =σ 0pα . This means that the !p and !o configura-
tions are identical.

In the following section, we will consider the stress response of gels
subjected to different types of planar extensions. Since our goal is
comparing, at least qualitatively, the model with experimental data, we
will assume that stress data on gels are recorded starting from a pre-
stretched state for unequal biaxial extensions.

3. Isotropic gels under incremental biaxial extensions

During stress relaxation tests as those described in Urayama and
Takigawa (2012) and Fujine et al. (2015), gels are first stretched up to a
fixed stretch quickly before diffusion starts. The elastic stress at this
fixed stretch, which is here called the fast stress, is measured. Then, the
gel is kept under this constant stretch over a long time interval that
allows diffusion to occur. The stress after diffusion occurs, which is here
termed the slow stress, is measured. The difference between fast and
slow stresses is known as stress relaxation and this relaxation is assumed
to be determined solely by swelling. In Fujine et al. (2015), the
agreement between the standard Flory–Rehner thermodynamic model
and biaxial experimental data was discussed in details (see also refer-
ences therein). Here, we aim to determine both the fast and the slow
stresses for isotropic gels subjected to incremental planar extensions. In
particular, after denoting with Lα the side lengths of a parallelepiped-
shaped gel along the unit vector eα, we consider three different biaxial
extensions:

1. A planar extension where the side length L1 is increased while=L 12 is fixed;
2. An equibiaxial extension where the side lengths L1 and L2 are in-

creased by the same amount.
3. An unequal biaxial extension where the side lengths are increased so

that =L L(3/2)2 1.

3.1. Incremental planar and equibiaxial extensions

We assume that the parallelepiped-shaped gel introduced in
Section (2.3) is subjected to incremental planar or equibiaxial exten-
sions from the swollen configuration !o. More precisely, for N con-
secutive times, the gel is stretched only in the direction e1 by Δλ1 or in
the two perpendicular directions e1 and e2 by equal amounts =λ λ∆ ∆1 2.
The gel is then allowed to relax due to diffusion. Let L1

max be the
maximal side length of the gel that is achieved at the Nth extension. We
assume that for an equi-biaxial extension =L L1

max
2
max.

At the kth extension, the side length of the gel increases from its
initial value −L k

1
( 1) to its final value L k

1
( ) ( = ⋯k N1, , ), where =L Lo1

(0) .
After introducing Δλ1 as

⎜ ⎟= ⎛⎝ − ⎞⎠λ
N

L L
L

∆ 1 ,o

o
1

1
max

(3.20)

we define the constant incremental stretch, λ̄ ,k
1
( ) at the kth stress re-

laxation as

= ++ −λ k λ
k λ

¯ 1 ∆
1 ( 1)∆

.k
1
( ) 1

1 (3.21)

Let us consider the case in which the side lengths and thickness of
the gel are Lo, Lo, and ho in the swollen configuration !o. Without loss of
generality, we can assume that the maximal side length that is attained
by the gel in N steps is =L L3 o1

max . Then, for a gel subjected to =N 1
extension, Eq. (3.20) yields =λ∆ 21 and Eq. (3.21) yields =λ̄ 31

(1) .
During stress relaxation, the side length of the gel is

= =L λ L L¯ .o1
(1)

1
(1)

1
max (3.22)

For a gel subjected to =N 2 incremental planar or equibiaxial ex-
tensions, one has that =λ∆ 11 from Eq. (3.20). According to Eq. (3.21),
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the gel is first stretched up to =λ̄ 21
(1) from the swollen configuration !o

and then up =λ̄ 3/21
(2) . Therefore, the side lengths of the gel during

stress relaxation are, respectively,

= == = =L λ L L
L λ L λ λ L L

¯ 2 ,
¯ ¯ ¯ .

o o

o

1
(1)

1
(1)

1
(2)

1
(2)

1
(1)

1
(2)

1
(1)

1
max (3.23)

For a gel subjected to =N 4 consecutive planar or equibiaxial ex-
tensions, =λ∆ 1/21 from Eq. (3.20). From Eq. (3.21), one has that the
gel is stretched up to =λ̄ 3/21

(1) from the swollen configuration !o for
the first time, =λ̄ 4/31

(2) for the second time, =λ̄ 5/41
(3) for the third

time, and =λ̄ 6/51
(4) for the fourth time. During the each of the kth

stress relaxations, the side lengths of the gel are

= == = == = == = = =
L λ L L

L λ L λ λ L L
L λ L λ λ λ L L
L λ L λ λ λ λ L L L

(3/2) ,
2 ,

(5/2) ,
3 .

p o

o o

o o

o o

(1)
1
(1)

1(2)
1
(2)

1(1)
1
(2)

1
(1)

1(3)
1
(3)

1(2)
1
(3)

1
(2)

1
(1)

1(4)
1
(4)

1(3)
1
(4)

1
(3)

1
(2)

1
(1)

1
max (3.24)

3.2. Fast and slow stresses

We assume that, at each kth extension, the gel is stretched up to λ̄α
k( )

within a time interval Δt< < td, where td is the characteristic time of
diffusion of the gel, and the stretches λ̄α

k( ) are then held constant during
a time interval Δt> > td (Fig. 2). During such time interval, the
thickness of the gel increases due to the water uptake and, conse-
quently, the plane stresses decrease from their (fast) values, σ ,fα

k( ) to the
(slow) values, σ ,α

k( ) with the difference between the fast and slow stress
values representing the diffusion-driven stress relaxation. This stress re-
laxation is thus determined by the overall increase in volume of the gel.
From Eqs. (2.3), (2.5), and (2.6), the non-zero axial components of the
Cauchy stress, =σ Ti ii =i( 1, 2, 3), can be found to be

= −σ G
J

λ p ,i
d

di
2

(3.25)

where λdi are the non-zero components of the deformation gradient Fd
and represent the stretches computed from the dry configuration !d.
From the traction-free boundary condition at the top and bottom of the
gel, =σ 0,3 it follows that

= = −p G
J

λ σ G
J

λ λand ( ) .
d

d α
d

dα d3
2 2

3
2

(3.26)

The Eqs. (3.26)2 can be used to compute both the fast stress, σ ,fα
k( ) and

slow stress, σα
k( ) using the different values of λd3 and Jd. Indeed, the

values of the applied axial stretches in the configuration immediately
before the kth stress relaxation, the ! f

k( ) configuration, and those during
stress-relaxation, the ! k( ) configuration, are both equal to

= = ⋯−λ L
L

λ λ λ λ¯ ¯ ,dα
k α

k

d
α

k
α

k
p o

( )
( )

( ) ( 1)

(3.27)

since the side lengths of the gel are kept constant during stress re-
laxation. On the contrary, the transverse stretch λd

k
3

( ) in the out-of plane
direction changes during stress relaxation. The value λd

k
3

( ) at the end of
the kth stress relaxation is determined by the chemical balance law
given by Eqs. (2.4)1 and (3.26)1, as

+ = =µ J
J

G λ µ J λ λ λ^ ( ) 1 ( ) Ω with ,d
k

d
k d

k
e d

k
d

k
d

k
d

k( )
( ) 3

( ) 2 ( )
1

( )
2

( )
3

( )

(3.28)

where =λ λ λd p o3
(0)

3 . On the other hand, when the gel goes from the
configuration ! −k( 1) to the configuration ! ,f

k( ) its volume does not

change, that is =λ λ λ¯ ¯ 1k k
f
k

1
( )

2
( )

3
( ) . The transverse stretches, λf

k
3

( ) and λ ,df
k
3

( )

are computed as follows (Fig. 2(b)):

= = −λ
λ λ

λ
λ λ

λ1
¯ ¯

and 1
¯ ¯

.f
k

k k df
k

k k d
k

3
( )

1
( )

2
( ) 3

( )

1
( )

2
( ) 3

( 1)

(3.29)

Eq. (3.26)2 with =λ λdα dα
k( ) gives the fast stress σfα

k( ) when =λ λd df
k

3 3
( ) and=J λ λ λd d

k
d

k
df

k
1

( )
2

( )
3

( ) and the slow stress σα
k( ) when =λ λd d

k
3 3

( ) and=J λ λ λd d
k

d
k

d
k

1
( )

2
( )

3
( ).

3.3. The fast and slow stresses corresponding to one and two consecutive
extensions

Consider the case in which the parallelepiped-shaped gel described
above is subjected to N consecutive planar extensions. We want to
evaluate explicitly the fast and slow stresses at each of these incre-
mental extensions. We assume that the total maximum side length that
the gel can achieve after the incremental extensions is Lα

max. For =N 1
extension up to λ̄ ,α

(1) we obtain that the in-plane and the out-of-plane
stretches immediately before stress relaxation are, respectively,

Fig. 2. (a) Schematic of the length L versus time t of a parallelepiped-shaped isotropic gel in various states: !p is the pre-stretched state; !f is the state immediately
after the application of an equibiaxial stretch of magnitude = =β λ λ¯ ¯1

(1)
2
(1) (isochoric deformation) that generates a fast stress, σf; ! is the steady swollen state

attained under a constant equibiaxial stretch of magnitude β which leads to a slow stress, σf, over the time interval Δt. (b) Schematic of the various configurations and
corresponding deformations used to evaluate the stress relaxation at incremental deformations. For = ⋯k N1 , ! f

k( ) and ! k( ) are the states where the fast stress and the
slow stress are computed, respectively.
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= =λ λ λ λ λ
λ λ

λ λ¯ and 1
¯ ¯

,dα α pα o df p o
(1) (1)

3
(1)

1
(1)

2
(1) 3

(3.30)

and the change in volume is given by =J J Jd p o. By substituting=λ λdα dα
(1) and =λ λd df3 3

(1) in Eq. (3.26)2, the fast stresses σfα
(1) can be

found to be

= ⎛⎝⎜ − ⎞⎠⎟σ G
λ J

λ λ
λ

λ λ
1 ( ¯ )

( ¯ ) ( ¯ )
.fα

o p
α pα

p(1) (1) 2 2 3
2

1
(1) 2

2
(1) 2 (3.31)

At the end of the stress relaxation, the in-plane and the out-of-plane
stretches are= =λ λ λ λ λ λ λ λ¯ and ,dα α pα o d p o

(1) (1)
3

(1)
3
(1)

3 (3.32)

and the change in volume is =J λ λ λ J J¯ ¯d p o3
(1)

1
(1)

2
(1) .

By substituting =λ λdα dα
(1) and =λ λd d3 3

(1) in Eq. (3.26)2, the slow
stresses σα

(1) can be found to be

= ⎛⎝⎜ − ⎞⎠⎟σ G
λ

λ
λ λ

λ
λ λ

λ
λ λ

λ
λ λ

¯
¯

1
¯ ¯

,
o

p

p p

p

p p
1
(1) 1

(1)

2
(1)

3
(1)

1

2 3

3
(1)

1
(1)

2
(1)

3

1 2 (3.33)

= ⎛⎝⎜ − ⎞⎠⎟σ G
λ

λ
λ λ

λ
λ λ

λ
λ λ

λ
λ λ

¯
¯

1
¯ ¯

.
o

p

p p

p

p p
2
(1) 2

(1)

1
(1)

3
(1)

2

1 3

3
(1)

1
(1)

2
(1)

3

1 2 (3.34)

The change in volume from the pre-stretched states !p to the ! (1) state,=J λ λ λ¯ ¯ ,1 1
(1)

2
(1)

3
(1) depends on λ3

(1) and can be evaluated by solving the
nonlinear Eq. (3.28). After noting that =J J J Jd p o1 and recalling that=J λ ,o o

3 =J λ λ λ ,p p p p1 2 3 =J λ λ λ¯ ¯ ,1 1
(1)

2
(1)

3
(1) this nonlinear equation can be

written as

+ =µ J J J G
λ

J J
λ λ λ λ

µ^ ( ) Ω
( ¯ ) ( ¯ )

.p o
o

p

p p
e1

1

1 1
(1) 2 2 2

(1) 2 (3.35)

For large deformations, 1/(J1JpJo)→ 0 so that

≃ −µ J J J RT χ
J J J

^ ( )
Ω

( 1/2) 1
p o

p o
1

1
2 2 2 (3.36)

and

− + =RT χ
J J J

G
λ

J J
λ λ λ λ

µ
Ω

( 1/2) 1
( ¯ ) ( ¯ ) Ω

.
p o o

p

p p

e

1
2 2 2

1

1 1
(1) 2 2 2

(1) 2 (3.37)

Now, by using Eq. (2.13), the above equation can be written as

⎜ ⎟⎛⎝ − ⎞⎠ + =µ G
λ J J

G
λ

J J
λ λ λ λ

µ
Ω

1
( ¯ ) ( ¯ ) Ω

.e

o p o

p

p p

e

1
2 2

1

1 1
(1) 2 2 2

(1) 2 (3.38)

We note that, for =µ 0e and = = =λ λ λ 1,p p p1 2 3 that is, without pre-
stretch, we get

= = −J λ λ λ λ λ( ¯ ¯ ) and ( ¯ ¯ ) .1 1
(1)

2
(1) 2/3

3
(1)

1
(1)

2
(1) 1/3 (3.39)

Eq. (3.39)1 corresponds to the Eq. (5) reported in Fujine et al. (2015); it
expresses the fact that for planar extensions, that is, for >λ̄ 1,α

(1) the
volume of the gel increases due to water absorption, and J1> 1.

On the other hand, initially =J Jd o and, hence, also =c cd o. Then,
from Eqs. (2.4) and (2.9), the chemical potential μ of the water within
the gel satisfies the following inequality

= + ⎛⎝⎜ ⎞⎠⎟ < +µ µ c p
λ λ

µ c p^ ( ) Ω 1
¯ ¯

^ ( ) Ω ,o o o o
1
(1)

2
(1)

(3.40)

for >λ̄ 1,α
(1) that is, under extension. Hence, the chemical potential

within the body decreases instantaneously due to the extension. Con-
sequently, the gel imbibes more water over time, the volume of the gel
increases, and the generated stresses decrease.

For an equibiaxial extension starting from the stress-free swollen
state !o with no pre-stretch, we have = = =λ λ λ 1p p p1 2 3 and we can set≡λ λ¯ ¯α

(1) (1). We can defined the amount of stress relaxation as= −σ σ σ∆ α fα α
(1) (1) and, for an equibiaxial extension of an isotropic ma-

terial, we can set Δσ≡ Δσα. It then follows that

⎜ ⎟⎜ ⎟= ⎛⎝ − ⎞⎠ − ⎛⎝ − ⎞⎠σ G
λ

λ
λ

G
λ λ

λ
λ

∆ ( ¯ ) 1
( ¯ )

1
( ¯ )

.
o o

(1) 2
(1) 4 3

(1)
3
(1)

(1) 2 (3.41)

We note that Eq. (3.41) can be used to evaluate stress relaxation, once
the nonlinear Eq. (3.28) has been solved for λ3

(1); in our case, this is
done numerically by using the built in algorithm ‘FindRoot’ in Mathe-
matica (Wolfram Research, Inc., Mathematica, Version 11). Under the
hypothesis of large deformations, and using Eq. (3.39)2 with =λ λ¯ ¯ ,α

(1) (1)

Eq. (3.41) simplifies to

= − − +− −σ G
λ

λ λ λ λ∆ (( ¯ ) ( ¯ ) ( ¯ ) ( ¯ ) ) .
o

(1) 2 (1) 4 (1) 2/3 (1) 8/3
(3.42)

We use Eq. (3.41) to evaluate the stress relaxation Δσ under equibiaxial
extension with ≤ = ≤λ λ1 ¯ ¯ 31

(1)
2
(1) . We use similar equations to evaluate

the stress relaxation for a planar extension with ≤ ≤λ1 ¯ 31
(1) and=λ̄ 1,2

(1) without pre-stretching ( = = =λ λ λ 1p p p1 2 3 ) and for an un-
equal planar extension with pre-stretches =L L ,p o1 =L L(3/2)p p2 1 and≤ = ≤λ λ1 ¯ ¯ 31

(1)
2
(1) . In evaluating the stress relaxation, the values of the

material parameters were selected to be those reported in Eqs. (2.10).
Fig. 3(a) shows the relative stress relaxation σ σ∆ / ,α fα

(1) versus L1/Lo
for a planar extension and an equibiaxial extension. The relative stress
relaxation σ σ∆ /α fα

(1) for an unequal planar extension is presented in Fig. 3
(b).

The relative stress relaxation increases as the magnitude of the
planar or equibiaxial extension ( =λ L L¯ / o1

(1)
1 ) increases. This is in

Fig. 3. (a) Relative stress relaxation curves, σ σ∆ / f1 1
(1) (blue triangles) and σ σ∆ / f2 2

(1) (red circles), versus L1/L0 for a planar extension with =λ̄ 1,2
(1) and=σ σ σ σ∆ / ∆ /f f1 1

(1)
2 2

(1) (black squares) versus L1/L0 for an equibiaxial extension with =λ λ¯ ¯1
(1)

2
(1). (b) Relative stress relaxation σ σ∆ / f1 1

(1) (blue triangles) and σ σ∆ / f2 2
(1) (red

circles) versus L1/L0 for =λ̄ 12
(1) and =L L/ 3/2p p2 1 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)
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agreement with the experimental results reported in Fig. 7
in Fujine et al. (2015). For planar extension with =λ̄ 1,2

(1) the relative
stress relaxation increases differently in the two in-plane directions. On
the contrary, for unequal biaxial extension, the relative stress relaxation
is different and becomes equal in the two directions when the extension
increases. This is due to the fact that the gel is first extended from the
stress-free swollen state !o to the pre-stretched state !p such that=L L/ 3/2p p2 1 and then is further extended to the state ! (1) assuming
that =λ λ¯ / ¯ 3/22

(1)
1
(1) .

Next, we consider the fast and slow stresses that correspond to two
(or more) consecutive extensions. For =N 2 consecutive extensions, we
get that the in-plane stretch and the out-of-plane stretch immediately
before stress relaxation are, respectively,

= =λ λ λ λ λ λ
λ λ

λ λ λ¯ ¯ and 1
¯ ¯

,dα α α pα o df p o
(2) (2) (1)

3
(2)

1
(2)

2
(2) 3

(1)
3

(3.43)

and the change in volume is =J J J Jd p o1 . By substituting =λ λdα dα
(2) and=λ λd df3 3

(2) in Eqs. (3.26)2, the fast stresses σfα
(2) can be found to be

= ⎛⎝⎜ − ⎞⎠⎟σ G
λ

λ
λ

λ
λ λ

λ
λ

λ
λ λ λ λ

λ
λ λ

¯
¯

( ¯ )
¯ ¯ ( ¯ ¯ )

,f
o

p

p p

p

p p
1

(2) 1
(1)

2
(1)

1

2 3

1
(2) 2

3
(1)

3
(1)

1
(1)

2
(1)

1
(2)

2
(2) 2

3

1 2 (3.44)

= ⎛⎝⎜ − ⎞⎠⎟σ G
λ

λ
λ

λ
λ

λ
λ λ

λ
λ λ λ λ

λ
λ λ

¯
¯

( ¯ )
¯ ¯ ( ¯ ¯ )

.f
o

p

p p

p

p p
2

(2) 2
(1)

1
(1)

2
(2) 2

3
(1)

2

1 3

3
(1)

1
(1)

2
(1)

1
(2)

2
(2) 2

3

1 2 (3.45)

At the end of the stress relaxation when the chemical equilibrium is
achieved so that the gel is in the ! (2) state, the in-plane stretch and the
out-of-plane stretch are, respectively,

= =λ λ λ λ λ λ λ λ λ¯ and ,dα α pα o d p o
(2) (1)

3
(2)

3
(2)

3
(1)

3 (3.46)

and the change in volume is =J λ λ λ λ λ λ J J¯ ¯ ¯ ¯d p o3
(2)

1
(2)

2
(2)

3
(1)

1
(1)

2
(1) . Sub-

stituting =λ λdα dα
(2) and =λ λd d3 3

(2) into Eq. (3.26)2 gives the following
slow stresses σα

(1):

= ⎛⎝⎜ − ⎞⎠⎟σ G
λ

λ λ
λ λ λ λ

λ
λ λ

λ λ
λ λ λ λ

λ
λ λ

¯ ¯
¯ ¯

1
¯ ¯ ¯ ¯

,
o

p

p p

p

p p
1
(2) 1

(2)
1
(1)

2
(2)

2
(1)

3
(2)

3
(1)

1

2 3

3
(2)

3
(1)

1
(2)

2
(2)

1
(1)

2
(1)

3

1 2 (3.47)

= ⎛⎝⎜ − ⎞⎠⎟σ G
λ

λ λ
λ λ λ λ

λ
λ λ

λ λ
λ λ λ λ

λ
λ λ

¯ ¯
¯ ¯

1
¯ ¯ ¯ ¯

.
o

p

p p

p

p p
2
(2) 2

(2)
2
(1)

1
(2)

1
(1)

3
(2)

3
(1)

2

1 3

3
(2)

3
(1)

1
(2)

2
(2)

1
(1)

2
(1)

3

1 2 (3.48)

We note that the fast and slow stresses that result from more than two
extensions (N>2) can be obtained easily following a similar procedure
as the one used here for two consecutive extensions.

3.4. The history-dependent fast stress response

Let us discuss some results of our analysis which show how incre-
mental biaxial extensions affect stress relaxation and, consequently,
could affect the design of hydrogel-based actuators. Firstly, we observe
that, as expected, if the gel is not subjected to any extension from the
state ! −k( 1) to the state ! ,k( ) the slow stress −σα

k( 1) is equal to the fast
stress σfα

k( ). Indeed, for =N 2, Eqs. (3.44) at = =λ λ¯ ¯ 11
(2)

2
(2) are equal to

Eqs. (3.33):

= =σ σ λat ¯ 1 .fα α α
(2) (1) (2)

(3.49)

Secondly, it is well known that the slow stress does not depend on the
history of deformation. In other words, if the initial side lengths Lpα of
the gel increase to the final side lengths Lα

max through the extension=λ L L¯ /α α pα
(1) max or through the extension =λ λ L L¯ ¯ /α α α pα

(2) (1) max that occurs
in =N 2 steps, then the same slow stress is obtained. To show this, let
us assume for simplicity that =L Lpα o so that the gel is not pre-stretched
but it is extended starting from the stress-free swollen state !o. Then,
the slow stress that corresponds to the first and second extensions are

⎜ ⎟= ⎛⎝ − ⎞⎠σ G
λ

L
L λ

L
L L

λ1 ,α
o

o(1) 1
max

2
max

3
(1)

2

1
max

2
max 3

(1)

(3.50)

and

⎜ ⎟= ⎛⎝ − ⎞⎠σ G
λ

L
L λ λ

L
L L

λ λ1 ,α
o

o(2) 1
max

2
max

3
(1)

3
(2)

2

1
max

2
max 3

(1)
3
(2)

(3.51)

respectively. The transverse stretch λ3
(1) in Eq. (3.50) can be computed

by solving the nonlinear Eq. (3.35) by substituting

= = = =λ λ λ λ J J λ L L
L

Jand .d d o d d
o

o3 3
(2)

3
(1) (1)

3
(1) 1

max
2
max

2 (3.52)

Similarly, the transverse stretch λ λ3
(1)

3
(2) in Eq. (3.51) can be computed

by solving the nonlinear Eq. (3.35) with

= = = =λ λ λ λ λ J J λ λ L L
L

Jand .d d o d d
o

o3 3
(2)

3
(2)

3
(1) (2)

3
(2)

3
(1) 1

max
2
max

2 (3.53)

Because the solutions of the nonlinear Eq. (3.35) with unknown λ3
(1) or

λ λ3
(1)

3
(2) are equal, the associated slow stresses (3.50) and (3.51) com-

puted from λ3
(1) or λ λ ,3

(1)
3
(2) respectively, are also equal.

On the contrary, the fast stress does depend on the history of de-
formation. This is an interesting finding that, to the best of our
knowledge, has never been noted explicitely. In order to demonstrate
such dependency, let us assume again that the gel is extended from the
stress-free swollen state with no pre-stretch. Then, the parallelepiped-
shaped gel of initial side lengths Lo can be stretched so that the final
side lengths are Lα

max either through a single extension that is defined by
λ̄α

(1) or through two (or more) extensions that are defined by λ λ¯ ¯α α
(2) (1).

The fast stress is lower when the side lengths are increased to Lα
max

through two (or more) extensions. This is due to the increase in volume
that is caused by the uptake of solvent that occurs during the first ex-
tension, and it can be easily verified using Eqs. (3.31) and (3.44). By
replacing λ̄α

(1) with L L/α o
max in Eq. (3.31), we obtain the fast stress that

corresponds to =N 1 extension and, by replacing λ λ¯ ¯α α
(1) (2) with L L/α o

max

in Eq. (3.44), we obtain the fast stress that corresponds to =N 2 con-
secutive extensions. It follows that

⎜ ⎟⎜ ⎟− = ⎛⎝ ⎛⎝ − ⎞⎠ + − ⎞⎠σ σ G
λ

L
L J

L
L L

J( ) 1 1
( ) ( )

( 1) .fα fα
o

α

o

o

α

(1) (2)
max 2

2
1

4

1
max 2 max 2 1

Since J1> 1, then− >σ σ 0 ,fα fα
(1) (2)

(3.54)

that is, the fast stress that corresponds to =N 1 extension is higher than
the fast stress that corresponds to the =N 2 consecutive extensions that
lead to an equal side length Lα

max of the gel. Because the fast stress
depends on the history of deformation, the stress relaxation that is
computed from such stress also depends on the history of deformation
as discussed below for the case of a planar extension and the case of an
equibiaxial extension.

4. Stress-relaxation due to incremental extensions

We investigate the dependence of stress relaxation on the history of
deformation by considering a planar extension and an equi-biaxial ex-
tension that occur in one or a few steps. Fig. 4 shows the diffusion-
driven history dependence of the stress response for a planar extension
assuming that the gel is stretched from the stress-free swollen config-
uration !o with no pre-stretching ( = = =λ λ λ 1p p p1 2 3 ) in =N 1, =N 2,
and =N 4 steps. Specifically, we consider the case in which the side
length L1 of the gel increases from Lo to =L L3 o1

max and the side length
L2 does not change ( =L Lo2 ).

First, we consider the case in which the gel is stretched up to λ̄1
(1)=3

with =λ̄ 12
(1) in =N 1 step. Thus, from Eq. (3.20), it follows that=λ∆ 31 . The dimensionless fast and slow stresses, σ G/fα

(1) and σα/G
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( =α 1, 2), for the stretch interval 1≤ L1/Lo≤ 3 are represented in
Fig. 4(a)–(b). The difference between these two quantities provides the
dimensionless stress relaxation for any value of L1/Lo.

Secondly, we assume that the gel is extended so that the final length=L L3 o1
max is achieved in =N 2 consecutive planar extensions so that

L1/L0 increases from 1 to 2 and from 2 to 3 (Fig. 4(c)–(d)). From
Eq. (3.20), it follows that =λ∆ 11 with =λ∆ 02 . According to
Eqs. (3.23), the side length of the gel along the direction e1 increases
firstly from Lo to =L L2 o1

(1) and then from L1
(1) to = =L L L(3/2) 3 o1

(2)
1
(1) .

The dimensionless fast and slow stresses, σ G/fα
(1) and σ G/ ,α

(1) at the first

extension =λ̄ 21
(1) are presented in Fig. 4(c)–(d). The side length of the

gel is then further stretched of =λ̄ 3/21
(2) so that =λ λ¯ ¯ 31

(2)
1
(1) . The fast

dimensionless stress at the final side length = =L L L3 o1
(2)

1
max achieved

after the two consecutive extensions =λ̄ 21
(1) and =λ̄ 3/21

(2) is much
lower than the one attained when the gel reaches the same final side
length L1

max in just one extension.
Finally, we consider the case in which the gel reaches the final side

length =L L31
max

0 in =N 4 consecutive planar extensions
(Fig. 4(e)–(f)). In this case, Eq. (3.20) leads to =λ∆ 1/21 with =λ∆ 02
and, from Eqs. (3.24), the side length of the gel is firstly increased from
Lo to L1

(1) and then to L ,1
(2) L ,1

(3) and =L L3 o1
(4) . The dimensionless fast

and slow stresses up to =λ̄ 3/2,1
(1) from λ̄1

(1) to =λ̄ 4/31
(2) corresponding

to =λ λ¯ ¯ 2,1
(2)

1
(1) from =λ̄ 4/31

(2) to =λ̄ 5/41
(3) corresponding to=λ λ λ¯ ¯ ¯ 5/2,1

(3)
1
(2)

1
(1) and from =λ̄ 5/41

(3) to =λ̄ 6/51
(4) corresponding to=λ λ λ λ¯ ¯ ¯ ¯ 31

(4)
1
(3)

1
(2)

1
(1) are reported in Fig. 4(e)-(f). Again, the dimension-

less stress relaxation at each of the stretches can be computed by cal-
culating the differences between the slow and fast dimensionless
stresses as shown in Fig. 5.

As expected, the stresses are much higher in the direction in which
the gel is stretched (Fig. 4(a),(c) and (e)) although the overall stress
relaxation is higher in the direction that is kept fixed (Fig. 4(b),(c) and
(d)). Moreover, the stress relaxation is reduced by increasing the
number of steps that are used to achieve a given extension of the gel. In
particular, for an extension that occurs in =N 4 consecutive extensions,
the dimensionless stress relaxation is also presented in Fig. 5 at different
extensions.

Fig. 4. Fast (black solid line) and slow (red dashed line) dimensionless stresses in three different planar extensions for 1≤ L1/L0≤ 3 with =L L2 0. Black circles and
red circles represent the fast and slow stresses, respectively, obtained in (a)–(b) =N 1 step with L1/L0 that goes from 1 to 3, (c)–(d) =N 2 steps with L1/L0 that goes
from 1 to 2 and from 2 to 3. (e)–(f) =N 4 steps with L1/L0 that goes from 1 to 1.5, 1.5 to 2, 2 to 2.5, and 2.5 to 3. Arrows between the black and red circles identify the
dimensionless stress relaxation. Dashed blue line represents dimensionless fast stress for a single extension up to =L L/ 31 0 . (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Dimensionless stress relaxation computed as −σ σ G( )/f 1 1 (blue line) and−σ σ G( )/f 2 2 (red line) corresponding to the planar extension shown in
Fig. 4(e)–(f). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 6. Fast (dashed blue line) and slow (dashed red line) dimensionless stress
for an equibiaxial extension for 1≤ L1/L0≤ 3 with =L L2 1. The green circle
represents the fast stress achieved in =N 1 step. The black circles represent the
fast stress achieved in 4 steps, with L1/L0 that goes from 1 to 1.5, 1.5 to 2, 2 to
2.5, and 2.5 to 3. Arrows between the green or black circles and the red circles
identify the dimensionless stress relaxation. Note that =σ G σ G/ /2 1 . (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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Similarly, one can compute the dimensionless fast and slow stresses
that result from an equibiaxial extension in =N 1 step or =N 4 steps
and the dimensionless stress relaxation (Fig. 6).

4.1. Effect of extension magnitude

The magnitude of the extension also influences the amount of stress
relaxation. We investigate this effect by considering a planar extension
in =N 2 consecutive steps of a gel that is in stress-free swollen con-
figuration !o. The final length =L L3 o1

max of the gel is attained via two
consecutive extensions of different magnitude. First, the side length of
the gel is increased from Lo to =L L(3/2) o1

(1) and then from L1
(1) to= =L L L2 3 o1

(2)
1
(1) (Fig. 7(a)). Second, the side length is increased from

Lo to =L L(5/2) ,o1
(1) and then from L1

(1) to = =L L L(6/5) 3 o1
(2)

1
(1)

(Fig. 7(b)). In Fig. 7, the slow and fast dimensionless stress responses σα
and σfα are reported. One can observed that changing the magnitude of
the intermediate extensions changes the final dimensionless stress re-
laxation.

4.2. Volume change

Figs. 4 and 5 show that the fast stress and the stress relaxation
strongly depend on the deformation history of the gel. This character-
istic behavior is determined by the water uptake and subsequent change
in volume that occurs when the gel is stretched. We compute the water
uptake (or, equivalently, change in volume) for a single planar or
equibiaxial extension and for incremental equibiaxial extensions.

Firstly, we consider the usual parallelepiped-shaped gel with side of
lengths Lo and thickness ho in the stress-free swollen state !o. Starting
from this configuration, the gel undergoes a single planar extension so
that =L L3 o1

(1) whereas =L Lo2
(1) and a single equibiaxial extension so

that = =L L L3 o1
(1)

2
(1) =N( 1). The change in volume given by Jd/Jo is

reported in Fig. 8(a). As expected, the change in volume that occurs
during an equibiaxial extension is higher than the one that occurs
during a planar extension.

Secondly, we consider the case of a gel subjected to =N 4

consecutive planar extensions and =N 4 consecutive equibiaxial ex-
tensions again from the stress-free swollen state !o and such that the
final side lengths of the gel are =L L3 o1

(1) and =L Lo2
(1) for planar ex-

tension and = =L L L3 o1
(1)

2
(1) for equibiaxial extension. At the kth ex-

tension, the change in volume before diffusion starts, when the gel is in
the ! f

k( ) state can be computed as J J/f
k

o
( ) . We note that since the ex-

tension after the −k( 1)th stress relaxation from the ! −k( 1) state to the
! f

k( ) state is isochoric, =−J Jk
f
k( 1) ( ) so J f

k( ) is determined by the change in
volume −J k( 1) that occurs at the −k( 1)th extension. Fig. 8 (b) presents−J J J( )/d f o at each of the four incremental planar and equibiaxial ex-
tensions. One can note that this quantity decreases as the number of
extension increases in planar tests whereas is almost constant in equi-
biaxal tests.

5. Conclusions

We presented an investigation of the history dependence of the
diffusion-driven stress response of gels subjected to planar incremental
extensions. The stress reduction at each incremental extension was
computed as the difference between the stress before diffusion starts
and the stress at the steady-state diffusion. The stress relaxation was
found to greatly depend on both the number and magnitude of incre-
mental extensions that lead to a given extension. To the best of our
knowledge, these theoretical findings have never been presented. The
proposed modeling framework could guide the development of control
strategies of hydrogel-based actuators that need to attain a prescribed
deformation in multiple steps.
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Fig. 8. (a) Volume change, Jd/Jo, occurring during a planar extension (red line) and an equibiaxial extension (blue line). (b) Difference −J J J( )/d f o in volume changes
occurring at four consecutive planar extensions (red line) and equibiaxial extensions (blue line). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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