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Abstract Mechanical alterations to pelvic floor ligaments
may contribute to the development and progression of pelvic
floor disorders. In this study, the first biaxial elastic and vis-
coelastic properties were determined for uterosacral ligament
(USL) and cardinal ligament (CL) complexes harvested from
adult female swine. Biaxial stress–stretch data revealed that
the ligaments undergo large strains. They are orthotropic,
being typically stiffer along their main physiological load-
ing direction (i.e., normal to the upper vaginal wall). Biax-
ial stress relaxation data showed that the ligaments relax
equally in both loading directions and more when they are
less stretched. In order to describe the experimental findings,
a three-dimensional constitutive law based on the Pipkin–
Rogers integral series was formulated. The model accounts
for incompressibility, large deformations, nonlinear elastic-
ity, orthotropy, and stretch-dependent stress relaxation. This
combined theoretical and experimental study provides new
knowledge about the mechanical properties of USLs and CLs
that could lead to the development of new preventive and
treatment methods for pelvic floor disorders.
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1 Introduction

The number of American women with pelvic floor disor-
ders, including fecal incontinence, urinary incontinence, and
pelvic organ prolapse, are projected to increase from 28.1
million in 2010 to 43.8 million in 2050 (Wu et al. 2009).
Epidemiological studies have suggested that, for pelvic organ
prolapse alone, approximately 11 % of women will undergo
surgery in their lifetime and that around 30 % of these women
will require additional procedures due to recurrence (Olsen
et al. 1997). Although the etiology of pelvic floor disorders is
not completely understood, mechanical alterations to pelvic
floor ligaments appear to contribute to their development and
progression (Nygaard et al. 2008). In particular, pelvic floor
disorders may result from damage to the cardinal ligament
(CL) and uterosacral ligament (USL) (DeLancey 1992; Mik-
los et al. 2002). The CL and USL are visceral ligaments
that connect the upper vagina/cervix to the pelvic sidewall.
They form a thin, membrane-like complex that is composed
of smooth muscle, blood vessels, nerve fibers, collagen, and
elastin. The relative amount of these components and their
organization remain unknown (Ramanah et al. 2012). These
visceral ligaments can provide support to the pelvic organs
while also accommodating highly mobile organs such as the
uterus, owing to their structure and composition (Ramanah
et al. 2012). The loading experienced by these ligamentous
membranes is likely biaxial in vivo, with larger forces occur-
ring along the axis normal to the upper vagina/cervix.

To date, there are no experimental studies on the mechan-
ical properties of the CL, and only a few have described the
uniaxial mechanical properties of the USL (Vardy et al. 2005;
Shahryarinejad et al. 2010; Martins et al. 2013). The vis-
coelastic behavior of the USL has been characterized in the
cynomolgus monkey (Macaca fascicularis) via incremen-
tal relaxation tests (Vardy et al. 2005; Shahryarinejad et al.
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2010). In these studies, the effect of strain history on the stress
relaxation behavior of the USL has been overlooked. During
incremental relaxation tests, the specimens are subjected to
constant strains that incrementally increase or decrease over
time. Both the ascending and descending order in which the
strains are applied and the recovery time between relaxation
tests are likely to affect the viscoelastic properties of these
tissues and thus must be taken into account (van Dommelen
et al. 2006). Moreover, the possible dependency of the rate
of stress relaxation on strain, as reported for other soft tis-
sues (Provenzano et al. 2001; Hingorani et al. 2004; Davis
and De Vita 2012), has not been investigated for the USL
(and CL).

Tensile properties, such as elastic modulus and ultimate
tensile strength, of the USL in female cadavers have been
quantified only recently (Martins et al. 2013). Despite the
limitations in the strain measurement (i.e, use of grip-to-grip
displacement and engineering strain), the experimental study
by Martins et al. (2013) confirms the earlier findings by Vardy
et al. (2005) showing that the USL undergoes large deforma-
tions. However, the mechanical properties of the CL and USL
should be determined by using a planar biaxial testing sys-
tem together with accurate strain measurement techniques,
as done for other soft tissues (Harris et al. 2003; Wells et al.
2005; Grashow et al. 2006; Nagatomi et al. 2008; Zou and
Zhang 2011), in order to better emulate their complex in vivo
loading conditions.

To the authors’ knowledge, no attempt has been made to
model the constitutive behavior of the CL and USL. Consti-
tutive laws for these ligaments must not only capture their
viscoelastic behavior but also the more physiologically rele-
vant biaxial loading conditions. The quasi-linear viscoelastic
(QLV) theory proposed by Fung (1993) has been widely used
in biomechanics. It has also been extended to describe the
biaxial stress relaxation of several biological tissues such as,
for example, the epicardium (Baek et al. 2005) and the aortic
elastin (Zou and Zhang 2011). However, the QLV theory is
based on the assumption that the rate of stress relaxation (or
rate of creep) is independent of strain (or stress). As already
pointed out, the extent to which such assumption is plausible
for the CL and USL remains unknown.

Constitutive theories such as nonlinear superposition
(Findley et al. 1976) and Schapery theory (Schapery 1969)
have been successfully employed to describe the one-
dimensional dependency of the stress relaxation rate (or creep
rate) on strain (or stress) in articular ligaments and tendons
(Provenzano et al. 2002; Hingorani et al. 2004; Duenwald
et al. 2009, 2010). QLV generalizations have been also pre-
sented to capture such dependency in collagen (Pryse et al.
2003; Nekouzadeh et al. 2007). More recently, Rajagopal and
Wineman (2009) have proposed the use of the Pipkin–Rogers
theory for transversely isotropic and orthotropic nonlinear
viscoelastic materials. Following their approach, Davis and

De Vita (2014) have presented a three-dimensional consti-
tutive equation for articular ligaments. This constitutive law
has been validated by considering different boundary value
problems with published experimental data. In this study, the
first planar biaxial stress–stretch and stress relaxation data
of swine CLs and USLs are presented. Nonlinearities and
material symmetry of the elastic and viscoelastic response
of these ligaments are investigated. Based on the findings of
the biaxial tests, a new three-dimensional constitutive model
is formulated within the theoretical framework set forth by
Pipkin and Rogers (1968).

2 Methods

2.1 Specimen preparation

All animal protocols were approved by the Institutional Ani-
mal Care and Use Committee (IACUC) at Virginia Polytech-
nic Institute and State University. Four adult female, domes-
tic swine (Sus scrofa domesticus) that were obtained from
a slaughterhouse were used for this study. No information
about the health history, parity, and litter’s size of the swine
was available. However, the swine were 3–4 years old and
had a weight of ∼450 lb. The swine was selected as animal
model since the CL and USL in the swine are histologically
similar to those in humans (Gruber et al. 2011). The CL and
USL were carefully cleaned of extraneous fat and muscle tis-
sue, cut into approximately 3×3 cm2 as shown in Fig. 1a. The
specimens were then hydrated in phosphate-buffered saline
(PBS, 0.5 M, pH 7.4) and frozen at −20 ◦C for 1–4 months.
Previous research has shown that the proper freezing of simi-
lar soft tissues has little effect on their mechanical properties
(Rubod et al. 2007). Then, prior to testing, the specimens
were thawed at room temperature (20–25 ◦C). The length and
width of each specimen were determined optically by analyz-
ing pictures taken with a CMOS camera (DCC1645C, Thor
Labs). The thickness of each specimen was calculated by
averaging four thickness measurements made with calipers
containing a force gauge (accuracy ± 0.05 mm, Mitutoyo
Absolute Low Force Calipers Series 573, Japan) by applying
a 50-g compressive load. Such thickness (mean ± SD) was
found to be 0.26 ± 0.07 mm.

2.2 Biaxial testing and strain measurement

Four bent safety pins connected to fishing line (4 lb
Extra Tough Trilene, Berkley Fishing Company, USA) were
inserted into each side of each specimen. The specimens
were then mounted into a planar biaxial tensile testing device
(Instron, Norwood, MA, USA), partially shown in Fig. 1b,
by wrapping the fishing line around four custom grips. These
grips consisted of two pulleys and a bearing of negligible
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Fig. 1 a Specimen position and
orientation within the swine
USL/CL complex. The black
dots denote the location of the
poppy seeds that were attached
to the specimen surface. Note
that E1 and E2 are orthogonal
unit vectors in the undeformed
configuration and E1 is
perpendicular to the upper
vaginal (or cervical) wall. b
Bath of the planar biaxial testing
system with load cells, actuator
arms, and specimen. c Histology
of a planar section of the swine
USL in Masson Trichrome (blue
collagen, red muscle and
cytoplasm). d Scanning electron
microscopy of a cross section of
the swine USL showing the
collagen fiber orientation
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friction that could rotate to ensure that the tension in each
of the four lines, each attached to one side of the specimen,
was equal. During testing, the specimens were submerged
in a bath containing PBS at 37 ◦C. Load was recorded with
four 20-N load cells (accuracy of at least 0.25 %) simulta-
neously during mechanical testing. The load along each axis
was taken as the average of the loads recorded by the two
load cells located along such axis. Nominal stress was cal-
culated by dividing the average load measured along each
axis by the undeformed cross-sectional area of the sample
that was perpendicular to such axis. Normalized stress at any
time was obtained by dividing the stress at such time by its
initial value during a relaxation test.

Prior to testing, four poppy seeds were glued to the sur-
face of the ligaments to produce suitable contrast for non-
contact strain measurements (Fig. 1a). Images were cap-
tured with a CMOS camera (DCC1645C, Thor Labs) and
a 25-mm fixed focal length lens (25 mm compact fixed focal
length lens, TECHSPEC, Edmund Optics Inc., USA). The
displacements of the poppy seeds were tracked with ProAn-
alyst Software (Xcitex Inc. Woburn, MA, USA). The dis-
placement gradient, ∇Xu where u is the displacement vector
and X is the position vector of the undeformed configuration,
was estimated using an interpolation method implemented in
Matlab (MATLAB version 7.10.0, Natick, MA: The Math-
Works Inc., 2010). This method was originally introduced by
Humphrey (Humphrey et al. 1987) and later used by other
researchers (Sacks 2000). From the displacement gradient,
the deformation gradient tensor, F, and the right Cauchy–
Green deformation tensor, C, were calculated as follows:

F = ∇Xu + I, (1)

C = FTF, (2)

where I is the identity tensor. Note that F was assumed to
be a plane deformation as discussed in detail by Humphrey
(2002, pp. 171–177).

2.3 Test protocol

The biaxial tests were performed in displacement control
mode. The displacements of the four actuators of the biax-
ial tensile testing device were set to be equal along the two
loading axes for each test. However, the optically measured
stretches of the specimens along such axes could not be con-
trolled to be equal during testing. For this reason, equi-biaxial
extension was not truly achieved.

A schematic of the testing protocol that was simultane-
ously used along the two loading axes is presented in Fig. 2.
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Fig. 2 Testing protocol used simultaneously along each loading direc-
tion (E1 and E2) during biaxial tests. Note that the displacement was
controlled and was set to be equal along the two loading directions
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All specimens (n = 22 from four different sows) were pre-
loaded to 0.04 N and then preconditioned by loading them
from 0.1 to 0.6 N for 10 cycles at a displacement rate of 0.1
mm/s. This displacement rate was selected to ensure quasi-
static loading conditions of the specimens. Similar displace-
ment rates have been employed by others for biaxial relax-
ation tests on soft tissues (Baek et al. 2005). Following pre-
conditioning, each specimen was unloaded to 0.04 N and
then loaded with the same displacement rate (0.1 mm/s).

Each specimen was stretched until the load along one of
the two loading axes reached a preset value between 2 and 12
N. More specifically, n = 9 specimens were stretched up to
a load between 2 and 4.9 N, n = 7 specimens were stretched
up to a load between 5 and 7.9 N, and n = 6 specimens
were stretched up to a load between 8 and 12 N. These loads
are comparable to the tensile loads that were safely used in
a recent in vivo mechanical study by Luo et al. (2014). By
loading the specimens up to a range of loads from 2 to 12
N, a range of corresponding stretches of the specimens were
obtained. The specimens were then held at these constant
stretches for 50 min and allowed to relax while the load and
time data were recorded.

The stress–stretch data that were collected during the ramp
displacement portion of this protocol were used to deter-
mine the elastic properties of the specimens (Fig. 2). The
stress–time data that were collected when the specimens were
subjected to constant stretches were employed to determine
the stress relaxation properties and dependence of the stress
relaxation rate on stretch.

Single stress relaxation tests were conducted on 15 of the
22 specimens. These specimens were held at a single con-
stant stretch, and the load was observed to decrease over 50
min. Three consecutive relaxation tests were performed on
7 of the 22 specimens (Fig. 2). For these specimens, a first
relaxation test was performed as described above. This test
was then followed by two additional relaxation tests. More
specifically, for n = 4 specimens, three constant displace-
ments in an ascending order were applied (e.g., displacement
value at 3-N load, displacement value at 6-N load, displace-
ment value at 9-N load), and for n = 3 specimens three
constant displacements in a descending order were applied
(e.g., displacement at 9-N load, displacement at 6-N load,
displacement at 3-N load).

The resting time between consecutive relaxation tests at
an ascending order of applied displacements was varied to
be 0 h (n = 2 specimens), 1 h (n = 1 specimen), 12 h (n = 1
specimen). Similarly, for relaxation tests with a descending
order of applied displacements, this time was varied to be 0
h (n = 1 specimen), 1 h (n = 1 specimen), 12 h (n = 1
specimen). The order in which the constant displacements
were applied and the resting time during three consecutive
relaxation tests were varied to investigate their effects on the
stress relaxation response of the CL and USL.

3 Theoretical formulation

The CL and USL are assumed to be incompressible orthotro-
pic materials. The incompressibility assumption is justified
by the high water content, while the assumption on the mate-
rial symmetry is due to the presence of fibrous components
(collagen and nerve fibers) in the ligaments (Gruber et al.
2011).

3.1 Constitutive model

The integral series formulation introduced by Pipkin and
Rogers (1968) is employed to model the three-dimensional
stress relaxation behavior of CLs and USLs. Only the first
term of the integral series is used, resulting in a first Piola–
Kirchhoff stress tensor, P(t), of the form (Rajagopal and
Wineman 2009):

P(t) = −p(t)F−T (t)+ F(t)

×
(

R[C(t), 0] +
∫ t

−∞

∂R[C(τ ), t − τ ]
∂(t − τ )

)
, (3)

where t denotes the time, F(t) is the deformation gradient
tensor, C(t) is the right Cauchy–Green deformation tensor,
R[C(τ ), t−τ ] is the tensorial relaxation function and p(t) is
the Lagrange multiplier that accounts for incompressibility.

For simplicity, the relaxation function is assumed to have
the following form:

R[C(τ ), t − τ ] = Rm[C(τ ), t − τ ] + R fn [C(τ ), t − τ ]
+R ft [C(τ ), t − τ ], (4)

where Rm is the tensorial relaxation function that accounts
for the contribution of the (isotropic) matrix, R fn is the ten-
sorial relaxation function associated with one family of fibers
and R ft is the tensorial relaxation function associated with
another family of fibers. Let M and N be the unit vectors that
define the orientation of these two families of fibers within
the USL/CL complex. These tensorial functions are selected
to have one of the simplest forms for an orthotropic material
(Holzapfel et al. 2000; Holzapfel and Ogden 2009):

Rm = c11, R fn = fnM ⊗ M, R ft = ftN ⊗ N (5)

where fn and ft are constitutive functions defined as

fn(I1(τ ), I4(τ ), t − τ )

=
{
c2(ec3(I4(τ )−1) − 1)r1(I1(τ ), t − τ ), I4(τ ) > 1

0, I4(τ ) ≤ 1
(6)

ft (I1(τ ), I6(τ ), t − τ )

=
{
c4(ec5(I6(τ )−1) − 1)r1(I1(τ ), t − τ ), I6(τ ) > 1

0, I6(τ ) ≤ 1
(7)
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where I1(τ ) = tr(C(τ )), I4(τ ) = M · C(τ )M, I6(τ ) =
N · C(τ )N are invariants of C and c1, c2, c3, c4 and c5 are
constant parameters. It must be noted that in the definition of
fn and ft , the fibrous components are assumed not to support
compressive loads. The relaxation function, r1, is selected to
be

r1(I1(τ ), t − τ )

= 1 + α1(I1(τ ))e−(t−τ )β1 + α2(I1(τ ))e−(t−τ )β2

1 + α1(I1(τ ))+ α2(I1(τ ))
, (8)

where α1 and α2 are functions of the first invariant of C, I1,
and β1 and β2 are constant parameters. Note that r1 goes to
1 when t = τ . As discussed later (Sect. 3.3), the functions
α1(I1(τ )) and α2(I1(τ )) can be determined from experimen-
tal data or defined a priori as:

α1(I1(τ )) = a1e−a2(I1(τ )−3), (9)

α2(I1(τ )) = a3e−a4(I1(τ )−3), (10)

where a1, a2, a3, and a4 are constant parameters.

3.2 Biaxial extension

Let {E1, E2, E3} and {e1, e2, e3} be two sets of unit vectors
that define orthonormal bases in the reference and deformed
configurations, respectively. The ligaments are assumed to
contain two families of fibers that are parallel to E1 and E2
in the reference configuration so that M = E1 and N = E2 as
illustrated in Fig. 1. Note that this assumption is made to sim-
plify and test the proposed model and must be validated by
means of histological studies. The USL and CL are assumed
to undergo an isochoric deformation described by

x1 = λ1(t)X1, x2 = λ2(t)X2, x3 = 1
λ1(t)λ2(t)

X3,

(11)

where (X1, X2, X3) and (x1, x2, x3) represent the Carte-
sian coordinates of a generic point in the reference and
deformed configurations, respectively, and λ1(t) and λ2(t)
are the axial stretches that act along the directions of the two
families of fibers. It follows that the deformation gradient
tensor, F(t), and the right Cauchy–Green strain tensor, C(t),
are given by:

F(t) = λ1(t)e1 ⊗ E1 + λ2(t)e2 ⊗ E2

+ 1
λ1(t)λ2(t)

e3 ⊗ E3, (12)

C(t) = λ1(t)2E1 ⊗ E1 + λ2(t)2E2 ⊗ E2

+ 1
λ1(t)2λ2(t)2 E3 ⊗ E3. (13)

This deformation is selected because for the plane deforma-
tion F that was computed experimentally (see Sect. 2.2) F11
and F22 were found to be generally much larger than F12

and F21. This suggests that extension was much greater than
shear. The magnitude of F12 and F21 typically fell below
0.025.

To derive the first Piola–Kirchhoff stress tensor that
defines the instantaneous elastic response, Eq. 3 is evalu-
ated at t = τ with the tensorial relaxation function defined in
Eqs. 5–8 and the deformation tensors in Eqs. 12–13. The
surface of the ligament that is normal to E3 is assumed
to be traction-free so that P33 = 0. By enforcing this
boundary condition, the Lagrange multiplier, p , can be com-
puted. Then, the only nonzero components of the first Piola–
Kirchhoff stress tensors, P11 and P22, are found to be:

P11 = c2

(
−1 + ec3(λ

2
1−1)

)
λ1 + c1

(

λ1 − 1

λ3
1λ

2
2

)

, (14)

P22 = c4

(
−1 + ec5(λ

2
2−1)

)
λ2 + c1

(

λ2 − 1

λ3
2λ

2
1

)

. (15)

These components of the stress are in terms of five parame-
ters, c1, c2, c3, c4, and c5. These parameters can be computed
from experimental data as described in Sect. 3.3.

The nonzero components of the first Piola–Kirchhoff that
describes the biaxial stress relaxation response can be found
from Eq. 3 with Eqs. 5–8 and Eqs. 12–13 with constant
stretches, λ1(t) = λ1 and λ2(t) = λ2, and by setting P33 = 0
to compute the Lagrange multiplier, p . These components
have the form:

P11 = c1

(

λ1 − 1

λ3
1λ

2
2

)

+ c2λ1

(
−1 + ec3(λ

2
1−1)

)

× r1(I1(τ ), t − τ ) (16)

P22 = c1

(

λ2 − 1

λ3
2λ

2
1

)

+ c4λ2

(
−1 + ec5(λ

2
2−1)

)

× r1(I1(τ ), t − τ ) (17)

where the relaxation function r1 is defined in Eq. 8 in terms
of β1, β2, α1 and α2. The seven parameters, c1, c2, c3, c4,
c5, β1, and β2, and two functions, α1, and α2, in Eqs. 16–17
can be determined from experimental data as described in
Sect. 3.3.

3.3 Identification of model parameters

A built in minimization function in Matlab, fmincon, was uti-
lized to fit the proposed constitutive model to the collected
experimental data. Overall, a total of 44 sets of biaxial elastic
data (22 sets of stress–stretch data for each of the two loading
axes) and 44 sets of normalized stress relaxation data (22 sets
of normalized stress–time data for each of the two loading
axes) were used. It must be noted that, for the n = 7 spec-
imens subjected to three consecutive stress relaxation tests,
the data collected after the first stress relaxation test were not
considered when fitting the constitutive model.
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More specifically, the model parameters were computed
by minimizing the sum of the squared differences between the
stresses computed via Eqs. 14 and 15 (or Eqs. 16 and 17) and
the biaxial elastic data (or normalized stress relaxation data).
During the minimization process, the model parameters were
constrained to be nonnegative.

The five elastic parameters c1, c2, c3, c4, and c5 were deter-
mined by simultaneously fitting Eqs. 14 and 15 to 22 sets of
biaxial stress data that were obtained from the ramp displace-
ment portion of the experiments, prior to any relaxation test
(Fig. 2). Once determined, the elastic parameters were fixed
in Eqs. 16 and 17 to compute the viscoelastic parameters β1
and β2 and the viscoelastic functions α1 and α2. Two different
approaches were employed to compute these quantities.

Firstly, β1, β2, α1, and α2 were computed by fitting Eqs. 16
and 17 to one representative set of normalized stress relax-
ation data. This set was obtained by taking the average of the
normalized stress relaxation data in the two loading direc-
tions. These data were collected from a specimen that was
held at a constant displacement that was approximately equal
to the average of the constant displacements used during the
relaxation tests (or first relaxation tests for n = 7 specimens
subject to three consecutive relaxation tests).

The parameters β1 and β2 were then fixed to the values
computed by fitting such representative data, while α1 and
α2, which depend on the first invariant of strain I1, were
computed by fitting Eqs. 16 and 17 to the remaining normal-
ized stress relaxation data. These data were again the average
data over the two loading directions. This procedure led to
values for α1 and α2 for different values of the first con-
stant strain invariants that were associated with the constant
displacements/stretches used during the relaxation tests. The
parameters a1, a2, a3, and a4 were then computed by fit-
ting Eqs. 9 and 10 to these generated α1 and α2 versus I1
data.

An alternative approach for determining β1, β2, a1, a2, a3,
and a4 in Eqs. 16–17 was also considered. In this case, the
relaxation function given in Eq. 8 and appearing in Eqs. 16–
17 was defined a priori in terms of β1, β2, a1, a2, a3, and
a4. These constants were computed by simultaneously fitting
Eqs. 16 and 17 to 44 sets of normalized stress relaxation data.

4 Results

4.1 Biaxial elastic properties

The USL and the CL exhibited a nonlinear elastic mechanical
behavior and experienced large strains (as high as 75 %) when
subjected to biaxial quasi-static loading conditions. Repre-
sentative stress–stretch data collected on n = 9 specimens
isolated from a single sow during the ramp portion of the
biaxial tests are presented in Fig. 3a for maximum stress

levels up to ∼1 MPa and Fig. 3c for maximum stress lev-
els up to ∼2.7 MPa. In Fig. 4a, c, e, data collected on a
smaller number of specimens (n = 4, n = 5, and n = 4,
respectively) from the other three sows are reported together
with the model fit. The anatomical location of each specimen
within the USL/CL complex is reported in the inset of each
figure.

A large amount of variability in the experimental data
was observed, even when the specimens were isolated from
the same sow as shown in Fig. 3a, c. The experimental
results suggests that the mechanical behavior of the ligaments
may be location dependent and orthotropic. In particular, it
appears that USL specimens and specimens located closer
to the USL within the USL/CL complex are stiffer in the
direction normal to the upper vagina/cervix than the speci-
mens further from the USL are in the same direction. Almost
all the specimens were stiffer in E1-direction (normal to the
upper vagina/cervix) than in the E2-direction.

The proposed model was able to capture the experimen-
tally observed elastic behavior of the ligaments as shown in
Fig. 4a, c, e. The mean and standard deviation of the elastic
parameters, c1, c2, c3, c4, and c5 in Eqs. 14–15, computed by
fitting n = 22 biaxial data sets are presented in Table 1. The
R2 values for these fittings range from 0.893 to 0.995. For
many specimens, the elastic constant c1, which represents the
contribution of the (isotropic) ground substance, approached
zero. This indicates that the ground substance had a rela-
tively small mechanical contribution when compared with
the fibrous components of the tissues. The elastic constants
c2 and c3, which account for the contribution of the fibers
normal to the upper vagina/cervix, were typically larger than
the constants c4 and c5, which account for the contribution
of the fibers transverse to the upper vagina/cervix. This is a
result of the specimens being stiffer in the direction normal
to the upper vagina/cervix.

4.2 Biaxial viscoelastic properties

Three consecutive relaxation tests were performed on seven
specimens. For each specimen, the greatest decrease in stress
over time always occurred during the first relaxation test,
regardless of whether the highest or lowest stretches were
applied first (Fig. 5). Similar results were observed when the
resting time between relaxation tests was 0, 1, or 12 h. These
tests revealed that the number of stretches that were applied
during three consecutive stress relaxation tests significantly
affected the stress relaxation behavior of the CL and USL.
Therefore, the data collected from the second and third tests
on these specimens were not used to characterize the stress
relaxation behavior of these ligaments.

After considering only the data from the first relaxation
tests on n = 7 specimens tested three times and the data
from single relaxation tests on n = 15 specimens, a total
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Fig. 3 a, c Stress–stretch curves with (b), (d) corresponding normal-
ized stress relaxation curves for n = 9 specimens isolated from a single
sow. The stress–stretch curves and stress relaxation curves obtained by
testing the same specimens are presented using the same colors. Note
that the filled symbols represent P11 versus λ1 data which are collected
along E1, that is normal to the upper vagina/cervix, while the unfilled

symbols denote P22 versus λ2 data which are collected along E2, that is
transverse to the upper vagina/cervix as indicated in Fig. 1a. The spec-
imen location within the USL/CL complex and relative to the vagina
and rectum is presented in the insets. (Note that the model was fit to
these data too but the results are not shown here)

of n = 22 stress relaxation curves were obtained. Stress
relaxation data for n = 9 specimens isolated from one sow
are presented in Fig. 3b, d. These data were collected after
collecting the elastic data presented in Fig. 3a, c, respectively.
In other words, each relaxation test was conducted at the con-
stant axial displacements that generated the maximum axial
stretches reported in Fig. 3a, c. For example, the maximum
axial stretches for the stress–stretch curves represented in
green squares in Fig. 3a were λ1 = 1.08 and λ2 = 1.14.
These were the constant stretches used for the biaxial relax-
ation test represented with green squares in Fig. 3b.

Substantial stress relaxation was observed in all specimens
tested. In general, the stress decreased very fast for the first
few hundred seconds but then slowly until the end of the test.
The stress relaxation behavior varied among specimens. For
example, some specimens retained about 65 % of the initial
stress at 3,000 s (curve represented with red squared symbols

in Fig. 3d), while others maintained as little as 20 % of the
initial stress at 3,000 s (curve represented with green squared
symbols in Fig. 3b). The observed differences in relaxation
rate and percent relaxation were dependent on the magnitude
of the axial stretches applied to the specimens. In general, the
stress relaxation was higher for specimens stretched to lower
stretch levels when compared with specimens stretched to
higher stretch levels. Interestingly, for all tested specimens,
the normalized stress relaxation was identical in both axial
directions even if the elastic behavior was different. This can
be appreciated in Fig. 3b, d, where the stress relaxation curves
in the two different axial directions, E1 and E2, overlap (i.e.,
curve represented with filled purple triangle symbols overlap
with curve represented with unfilled purple triangle symbols
in Fig. 3b).

The constitutive model was able to fit the stress relaxation
data as shown in Fig. 4b, d, f with β1 = 0.0306 and β2 =
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Fig. 4 a, c, e Stress–stretch data with model fit and (b), (d), (f) corre-
sponding normalized stress relaxation data with models fit for a total of
n = 13 specimens isolated from three sows. The stress–stretch curves
and stress relaxation curves obtained by testing the same specimens
are presented using the same colors. Note that the filled symbols repre-
sent P11 versus λ1 data which are collected along E1, that is normal to

the upper vagina/cervix, while the unfilled symbols denote P22 versus
λ2 data which are collected along E2, that is transverse to the upper
vagina/cervix as indicated in Fig. 1a. The specimen location within the
USL/CL complex and relative to the vagina and rectum is presented in
the insets

0.0008. The values of α1 and α2 computed by fitting the
average stress relaxation data over the two axial directions
are presented in Fig. 6 versus I1 for each specimen. The R2

values for these fittings range from 0.950 to 0.995. In general,
the values of α1 and α2 were higher for lower values of I1

which correspond to lower values of the axial stretch. The
dependency of α1 on I1 can be described by Eq. 9 with a1 =
1.078 and a2 = 2.303 (R2 = 0.234) and the dependency of
α2 can be described by Eq. 10 with a3 = 2.175 and a4 =
4.915 (R2 = 0.386).
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Table 1 Mean and standard deviation of the parameters computed by
fitting data collected from n = 22 specimens

Parameter Mean SD

c1 (Pa) 722 2,220

c2 (Pa) 3.79 × 105 6.07 × 105

c3 9.05 7.18

c4 (Pa) 1.89 × 105 2.73 × 105

c5 8.76 7.00

λ 1 =

λ 1=

λ1=

λ 2 =

λ2=

λ 2= 

λ 1 =

λ 1 =

λ 1 =

λ 2 =

λ 2 =

λ 2 =

e
e
e
e
e
e

(a)

(b)

Fig. 5 Stress relaxation response for n = 2 specimens that were sub-
jected to three consecutive biaxial relaxation tests. The resting period
between relaxation tests was 1 h. It must be noted that the normalized
stress relaxation data that are collected in two different directions, E1
and E2, at comparable stretches are, in most cases, almost identical.
For this reason, the normalized stress relaxation data in these two direc-
tions cannot be distinguished: the data collected at a constant λ1 in
the E1-direction overlap with the data collected at a constant λ2 in the
E2-direction. a The specimen was subjected to three constant displace-
ments in an ascending order. b The specimen was subjected to three
constant displacements in a descending order

When the relaxation function given in Eq. 8 was defined
a priori in terms of a1, a2, a3, a4, β1, and β2 and Eqs. 16
and 17 were simultaneously fitted to the entire set of biaxial

α
2

α
1

(a)

(b)
I1

I1

Fig. 6 a Dependency of α1 on I1 and b dependency of α2 on I1. Recall
that I1 is the first invariant of strain and α1 and α2 are measures of the
percent stress relaxation of the specimens. The continuous lines in (a)
and (b) represent the functions α1(I1(τ )) = 1.078e−2.303(I1−3) and
α2(I1(τ )) = 2.175e−4.915(I1−3), respectively

stress relaxation data, the model predicted the general trend in
the stress relaxation behavior with a1 = 0.906, a2 = 2.86,
a3 = 1.59, a4 = 4.08, β1 = 0.0469, and β2 = 0.00117
(R2 = 0.742). The predicted stress relaxation behavior of
ligaments stretched to different initial stretches is presented
in Fig. 7.

5 Discussion

The swine CL and USL exhibited an orthotropic nonlin-
ear elastic response and undergo large deformations when
stretched biaxially (Figs. 3a, b, 4a, c, e). Not surprisingly,
these membraneous ligaments were found to be in general
stiffer along their main physiological loading direction that is
normal to the upper vagina/cervix (E1 in Fig. 1a). The large
deformations are also to be expected since the ligaments sup-
port internal organs such as the uterus that are quite mobile
within the pelvis.
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λ1 = λ2 = 1.05
λ1 = λ2 = 1.1
λ1 = λ2 = 1.15
λ1 = λ2 = 1.2

Fig. 7 Model predictions of the stress relaxation of ligaments that are
subjected to equi-biaxial extensions (Eq. 11 with λ1 = λ2) at different
axial stretches levels. The predictions were made using the proposed
constitutive model with parameters that were computed by fitting n =
22 sets of biaxial normalized stress relaxation data simultaneously

Under constant biaxial stretches, the stresses in the swine
CL and USL were found to significantly decrease over time
(Figs. 3c, d, 4b, d, f). Our results are comparable to those
by Vardy et al. (2005) on the USL in cynomolgus monkey
where, after multiple relaxation tests along a single axis, the
stress decreased by about 70 % over a 2,000 s time inter-
val. Our biaxial data showed that, even though the elas-
tic behavior of the ligaments is orthotropic, the normalized
stress relaxation response is similar along the two loading
axes (E1 and E2 in Fig. 1a). The micro-structural origins
of the planar anisotropic elasticity and isotropic viscoelas-
ticity are unknown. It is likely that there are more collagen
fibers aligned along the physiological loading direction of
the ligaments. The different amount of collagen fibers could
lead to different elastic properties in the two loading direc-
tions. However, if the stress relaxation behavior is determined
mainly by the collagen fibers, as previously speculated by
some researchers (Purslow et al. 1998), the normalized stress
relaxation will be equal in the two loading directions. Indeed,
the normalized stress relaxation data do not account for dif-
ferences in the amount of collagen fibers. This difference will
only influence the initial stress.

It is quite possible that the isotropic matrix and the other
tissue’s components, rather than the collagen fibers, gov-
ern the stress relaxation behavior of the CL and USL. This
appears to be, however, less likely since the collagen fibers
are stiffer than the matrix and the other tissue’s components
and are subjected to larger stresses. We speculate that the
decrease in stress over time, which was recorded to be at
least 20 %, is too large to be attributed solely to the isotropic
matrix.

In order to determine the dependency of stress relaxation
on stretch, we completed three consecutive relaxation tests

on n = 7 specimens. By performing these tests on the same
specimen, we attempted to limit possible inter-specimen vari-
ability that makes difficult the interpretation of our data. Con-
stant stretches during these tests were applied in both ascend-
ing and descending orders (Fig. 5), allowing the specimens
to rest for 0, 1, and 12 h between consecutive tests. Indepen-
dently of such order and resting period, the specimens always
relaxed more during the first relaxation test. These prelim-
inary experiments revealed that the effects of strain history
need to be carefully considered when studying the depen-
dency of stress relaxation on stretch via multiple relaxation
tests (van Dommelen et al. 2006). The increased level of
hydration of the ligaments during these tests is also likely to
alter their viscoelastic properties.

For the reasons mentioned above, we decided to consider
only data collected during the first relaxation tests for the
n = 7 specimens subjected to three consecutive relaxation
tests and performed single relaxation tests on n = 15 spec-
imens. Our findings revealed that the rate of stress relax-
ation depends on stretch: the ligaments relax less as the
stretch increases (Figs. 3c, d, 4b, d, f). This trend was
also observed in previous uniaxial studies on medial col-
lateral ligaments (Hingorani et al. 2004; Provenzano et al.
2001). In these studies, the decrease in stress relaxation with
increased stretch has been attributed to the loss of water
that occurs as the ligaments are stretched out. However,
this trend may have to do with the molecular reorganization
that occurs within individual collagen fibers during stress
relaxation.

We formulated a new constitutive law by assuming that
the ligaments are composed of an isotropic matrix and two
families of fibers. The model was successfully fitted to the
biaxial elastic data although a large amount of variation was
observed in the values of the elastic parameters c1, c2, c3, c4,
and c5 (Table 1). The large standard deviations in the values
of these parameters are due to the significant differences in
the shape of the stress–stretch curves. For all but three spec-
imens, c1 was much less than 1 implying that the c1-term,
representing the isotropic matrix, did not play an important
role in determining the elastic properties of the CL and USL.
For the three specimens with c1 greater than one, the c1-term
played a slightly more important role. However, the con-
tribution of the isotropic matrix was still inferior than the
contribution of the fibrous components. The average values
of c2 and c3 were comparable to c4, and c5, thus suggesting
that the two family of fibers are equally contributing to the
elasticity of the ligaments.

The relaxation function r1 was selected to depend only
on the first invariant of strain I1 and not the fourth invariant
of strain I4 or fifth invariant of strain I5 which would indi-
cate direction-dependent stress relaxation. One must note
that, if the function α1 and α2 presented in Eqs. 9 and 10,
respectively, are taken to be constant, the proposed model
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collapses to the QLV model. Furthermore, a reduction of our
three-dimensional model to a one-dimensional model will
lead to a nonlinear viscoelastic model that is similar to the
one proposed by Pryse and colleagues (Pryse et al. 2003;
Nekouzadeh et al. 2007). By expressing the relaxation func-
tion in Eq. 8 in terms of the parameters a1, a2, a3 and a4
(Eqs. 9–10) and β1, β2, which are all independent of strain,
we were able to compute these parameters by simultane-
ously fitting the biaxial stress relaxation data collected from
n = 22 specimens (Fig. 7). The model with these parame-
ters predicts the general trend of decreasing stress relaxation
with increasing stretch. But, due to the large variation in the
experimental data, the model cannot reproduce very well the
stress relaxation response for each specimen. This variation
is likely due to differences in the locations of the specimens
relative the vagina and rectum and differences among the
sows.

Planar biaxial tests are useful for characterizing the
mechanical behavior of membraneous ligaments such as
the swine CL and USL. However, the development and
validation of an orthotropic three-dimensional constitutive
model require additional data such as, for example, through-
thickness mechanical data (Holzapfel and Ogden 2009) that
are currently unavailable. Ideally, the arrangement of the
collagen fibers and other constituents (i.e., nerve fibers and
smooth muscle cells) during elastic and viscoelastic planar
biaxial tests should be quantified so that their contributions
can be considered in the development of constitutive mod-
els. In the proposed constitutive law, we assumed the exis-
tence of two families of fibers that are oriented perpendic-
ularly to each other. This assumption was primarily made
to select the simplest orthotropic tensorial relaxation func-
tion. Although some of our preliminary histological and SEM
studies (Fig. 1c, d) demonstrated the existence of these fibers’
families on some excised regions of the swine USL and CL
complex, a more in depth analysis of the structure of these
ligaments is needed.

Many researchers have noted that significant structural
remodeling takes place in the CL and USL under patholog-
ical conditions. For example, CL specimens from women
affected by uterine prolapse have been reported to have more
sparsely distributed and thicker collagen fibers than healthy
women (Salman et al. 2010). Other studies have reported that
a decrease in collagen and elastin levels is associated with the
development of prolapse and urinary incontinence (Campeau
et al. 2011). This structural remodeling will likely alter the
mechanical properties of the pelvic ligaments and compro-
mise their ability to support pelvic organs. Additional exper-
imental and theoretical studies are thus necessary to under-
stand how the mechanical properties of the CL and USL are
altered by pelvic disorders so as to develop new preventive
and treatment strategies.

5.1 Conclusions

This study presents the first planar biaxial elastic and vis-
coelastic experimental data on the CL and USL. The results
revealed that the specimens are orthotropic and stiffer in the
direction normal to the upper vagina/cervix. The normalized
relaxation behavior was similar in both loading axes, and the
amount of relaxation was dependent on the applied stretch:
specimens subjected to lower constant stretches relaxed more
than specimens subjected to higher constant stretches. A
novel nonlinear three-dimensional constitutive model was
formulated by assuming that the ligaments are composed
of two families of fibers embedded in an isotropic matrix.
The model was able to capture the elastic orthotropy, finite
strain, and stretch-dependent stress relaxation of the CL and
USL. This research advances our limited knowledge about
the mechanics of the CL and USL that is needed to under-
stand the etiology of pelvic floor disorders and develop new
preventive and treatment methods.
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