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A new energy for the description of large deformations of lipid bilayers is formulated with mathematical
rigor. This energy is derived by considering the smectic A liquid crystalline nature of lipid bilayers and the
coupling between the deformations of the layers and their constituent lipid molecules. Analogies between
smectic A liquid crystals, with an infinite number of layers, and lipid bilayers, with a finite number of layers,
are further discussed. The novelty of the energy density is demonstrated by studying the large
deformations of planar lipid bilayers induced by cylindrical inclusions. The results of this study are
directly compared with the results obtained using May's theoretical framework [May, Eur. Biophys. J.,
2000, 29, 17–28] in which small deformations are assumed. As expected, the proposed energy density
predicts larger distortions of the lipid molecules and deformations of the lipid bilayers close to an inclusion.

1 Introduction

Lipid bilayers are currently being used for engineering
numerous bioinspired microsystems ranging from portable and
fast biosensors for detecting biological agents33,36 to biocom-
patible and biodegradable drug delivery carriers.6,55 Many of
these micro-systems work as proof of concept in laboratory
environments. Their application in real-world scenarios,
however, remains to be demonstrated due to the poor stability
of lipid bilayers to mechanical disturbances.23 Current chal-
lenges encountered in experimental biomechanics (e.g.,
measurement of physical quantities in the nanoscale range)
prevent an accurate characterization of the mechanical prop-
erties of lipid bilayers, which is needed to enhance their
performance. Therefore, the formulation of reliable mathe-
matical models is essential in making a big leap forward in the
development of the next generation of bio-inspired micro-
systems that include lipid bilayers.

There has been extensive research on modeling the physical
properties of lipid bilayers by employing molecular dynamics,29

coarse-grained models11,49 and continuum models.12,58 Molec-
ular dynamics simulations are very powerful tools for studying
the microstructure of lipid bilayers, especially their interactions
with different molecules and proteins.20,66 Due to current limi-
tations in computing power, molecular dynamics can only be
used for simulating phenomena that occur at the nano-meter
spatial scale and nano-second time scale.11,38 In coarse-grained
models, some ne details about the structure of lipids are

averaged out so that the simulations are computationally less
expensive.37,50 Continuum models are, however, preferred for
simulating physical phenomena over long length and time
scales, which are relevant to many processes in cell biology,
experimental studies, and real-world applications involving
lipid bilayers.

One of the most successful continuum models for lipid
bilayers is the spontaneous curvature model rst formulated by
Canham15 and then rened by Helfrich.35 According to the
spontaneous curvature model, the free energy per unit area, w,
of lipid bilayers can be expressed in terms of the mean curva-
ture, H, and Gaussian curvature, K, as

w ¼ k

2
ð2H # s0Þ2þkK ; (1)

where k is the curvature or bending modulus, !k is the saddle-
splay or Gaussian curvature modulus, and s0 is the spontaneous
curvature, which takes into account possible asymmetries
between the two leaets of the lipid bilayer. The mean and
Gaussian curvatures can be dened in terms of the principal
radii of curvature, 1/R1 and 1/R2, or, in a notation more familiar
in liquid crystals, in terms of the unit normal to the lipid layers,
a (Fig. 1(a)). It can be easily shown that41

H ¼ 1

2

!
1

R1

þ 1

R2

"
¼ 1

2
V$a; (2)

K ¼ 1

R1R2

¼ V$ððV$aÞaÞ þ V$ða& ðV& aÞÞ: (3)

The spontaneous curvature model has been derived by Hel-
frich from the Frank energy density for liquid crystals in which
the normal to the layers, a, coincides with the director, n, which
denes the alignment of the molecules28,61 (Fig. 1(b)). The
relationships among the curvature moduli, k and !k, and the
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constants, k11, k22 and k24, in the Frank's energy density28 are k¼
k11d, and !k ¼ #(k22 + k24)d, where d is the thickness of the
membrane.53 This model has been used by hundreds of
researchers to study various congurations of lipid bilayers
including their interactions with channels and inclu-
sions.1,2,8,9,22,32 Thus, citing here all the great research that has
followed from Canham andHelfrich's pioneering work is clearly
impossible.

The spontaneous curvature model cannot describe the tilt of
the lipid molecules that is associated with the deformation of
the layers. Indeed, the energy per unit area presented in eqn (1)–
(3) depends only on the normal to the layers, a, and does not
contain any term that accounts for the tilting of the molecules.
As recognized by Helfrich in his seminal work35 and, more
recently, by other investigators,30,34,45–47 such tilt of the lipid
molecules should be taken into account when modeling lipid
bilayers. The most comprehensive approach, in which different
energetic contributions are considered, has been presented by
May.45 May's analysis is limited to small distortions of the lipid
molecules and small displacements of the layers. However, lipid
layers undergo large deformations such as those observed
experimentally with vesicles59 and the tilt of lipid molecules
experiences distortion measured to be as large as 40'.65 Thus, in
order to accurately characterize the mechanical performance of
lipid-based micro-devices, continuum models must be formu-
lated to describe the large distortions of lipid assemblies and
decoupling between the normal to the layers, a, and the director
alignment, n (Fig. 1(c)).

The objective of this manuscript is to derive novel
continuum models for characterizing the equilibrium congu-
rations of lipid bilayers. The great success of the spontaneous
curvature model derived by Helfrich35 from the Frank energy
density for liquid crystals supports the idea that lipid bilayers
must be modeled by accounting for their liquid crystalline
nature. The newmodels will be formulated within the context of
a new nonlinear theory for smectic A liquid crystals in which the
alignment of the lipid molecules, which is dened by the unit
vector n, is not constrained to coincide with the smectic layer
normal, which is dened by the unit vector a (Fig. 1(c)).62 This
assumption makes the new theory more attractive than the

theory for smectic A liquid crystals proposed by de Gennes24 and
the well-known spontaneous curvature model35 used for lipid
bilayers.

2 Energy density for lipid bilayers

The following general energy density, wDS, is proposed for lipid
bilayers

wDS ¼
1

2
Ka

1 ðV$aÞ
2þ 1

2
Kn

1 ðV$n# s0Þ2þ
1

2
K2V$½ðn$VÞn# ðV$nÞn)

þ 1

2
B0jVFj#2ð1# jVFjÞ2þ 1

2
B1

h
1# ðn$aÞ2

i

þ B2ðV$nÞ
#
1# jVFj#1

$
;

(4)

where Ka
1, Kn

1, K2, B0, B1, and B2 are material constants. The rst
term on the right-hand side is the bending energy, the second
term is the splay energy with s0 denoting the spontaneous splay,
the third term is the saddle-splay energy, the fourth term is the
compression–expansion energy, the h term is the energy due
to the coupling between n and a, and the sixth term is the
energy due to the coupling between the splay and compression–
expansion of the layer.

The scalar function F in eqn (4) denes the layer structure of
a smectic A liquid crystal in a sense that will be described in
detail in Section 3. The unit normal to the smectic layer, a, is
derived from it by setting

a ¼ VF/|VF|. (5)

For example, F ¼ z and a ¼ (0, 0, 1) for planar smectic layers
that are parallel to the xy plane in the usual Cartesian
description.

The energy density wDS presented in eqn (4) needs to be non-
negative. Clearly, this requires the material constants Ka

1, Kn
1, B0,

and B1 to be non-negative, since these are the coefficients of
quadratic terms. In order to determine a priori restrictions on K2

and B2 in relation to the other material constants, we can follow
standard methods used in liquid crystal theory.61 Thus, we rst
note that because Ka

1 and B1 are non-negative and their related
expressions V$a and n$a do not occur elsewhere in eqn (4), the
remaining terms in such equation can be written as a quadratic
form that only involves the material constants Kn

1, K2, B0, and B2.
Moreover, the following identity61

V$[(n$V)n # (V$n)n] ¼ tr((Vn)2) # (V$n)2 (6)

enables the required quadratic form for the remaining terms to
be written as½vT$A$v where, for s0 ¼ 0, v is a 3& 1-matrix and A
is a 3 & 3-matrix dened by

v ¼

0

B@

V$nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr
#
ðVnÞ2

$r

1# jVFj#1

1

CA ; A ¼

0

@
Kn

1 # K2 0 B2

0 K2 0
B2 0 B0

1

A (7)

while, for s0 s 0, v is a 4 & 1-matrix and A is a 4 & 4-matrix
dened by

Fig. 1 (a) Curvature for a two-dimensional surface. R1 and R2 denote the radii of
curvature and the vector a represents the normal to the surface. (b and c) The
short bold lines represent the molecules while the planes represent the layer
alignment of the smectic A liquid crystals. (b) Undistorted smectic A liquid crystal
alignment: the director n coincides with the layer normal a. (c) Distorted smectic A
liquid crystal alignment: the director n decouples from the layer normal a.
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v ¼

V$n
s0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tr
#
ðVnÞ2

$r

1# jVFj#1

0

BBBB@

1

CCCCA
; A ¼

0

BB@

Kn
1 # K2 #Kn

1 0 B2

#Kn
1 Kn

1 0 0
0 0 K2 0
B2 0 0 B0

1

CCA : (8)

The quadratic form ½vT$A$v is positive semi-denite if and
only if the determinants of all the principal submatrices of the
symmetric matrix A are non-negative.48 It is a simple exercise to
show that, for s0 ¼ 0, the material constants need to satisfy the
inequalities

Ka
1 $ 0, Kn

1 $ K2, K2 $ 0, B0 $ 0, B1 $ 0, (Kn
1#K2)B0 –B2

2 $ 0, (9)

while, for s0 s 0, the material constants must satisfy the
inequalities

Ka
1 $ 0, Kn

1 $ 0, K2 ¼ 0, B0 $ 0, B1 $ 0, B2 ¼ 0. (10)

It must be noted that the inequalities that arise when s0 ¼
0 imply that when Kn

1 ¼ K2 then B2 ¼ 0.
The energy density wDS in eqn (4) does not rule out the

possibility that n and a may coincide at specic locations. It is
invariant under the changes in sign a / #a or, equivalently,
VF/#VF. If we require wDS to be invariant to a change in sign
of the director n then s0 must be set to zero and B2 ¼ 0: this is
generally not necessarily the case for lipid bilayers in which n
and #n are distinguishable. With the exception of the Ka

1 term,
we will show in Section 4 that this energy density when linear-
ized is the same as the one proposed by May45 to model the
deformation of a planar lipid bilayer induced by an inclusion.

3 Compression energy term
3.1 Discrete case

The energy density presented in eqn (4) can be used to model
both smectic A liquid crystals, with an innite number of layers,
and lamellar structures, with a nite number of layers, such as
lipid bilayers. Of course, in general liquid crystals the energy
density is required to be invariant to the change in sign of the
director n and s0 and B2 need to be set to zero. These require-
ments are absent when modeling lipid bilayers. It will be shown
hereaer that the compression–expansion energy term, namely
the B0 term in eqn (4), has the same form for smectic A liquid
crystals as it has for discrete numbers of lamellae. Toward this
end, we will adopt many of the mathematical arguments
employed by Capriz,13,14 Napoli51,52 and Capriz and Napoli.16 We
will use the terminology of smectic liquid crystals from the
outset and, in the discourse that follows in the next section,
draw upon the parallels with the theory of lipid bilayers.

The lamellar structure of smectic A liquid crystals arises
from a periodic mass density distribution that they exhibit. It is
well known that the corresponding smectic order can be char-
acterized by a periodic mass density, r, having the form of a
Fourier series that can be approximated by18,24,57

r(x) z r0 + r1cos(2pF(x,t)/d*), (11)

where x¼ x(t) is the position vector of a generic point in space at
any time t, r0 and r1 are constant amplitudes, d* is the constant

common interlayer spacing of the smectic A liquid crystals in
the initial conguration. The time variable, t, is here introduced
to describe distinct congurations of the lamellar structure. The
initial conguration is taken to be the one in which all the layers
are equidistant. The smectic layers can therefore be represented
by k surfaces, Sk for k¼ 0, 1, 2, 3,., which can be dened at any
given time t as the level sets of F(x, t) through the relationship

F(x, t) ¼ kd*. (12)

For example, a planar layered sample of smectic A, whose layers
are normal to the z-axis, can be represented by z ¼ kd* at a xed
time. At any other different time, away from any planar layered
conguration, the layer structure will continue to be the level set
ofF(x, t)¼ kd*. However, such an equation need not necessarily
lead to a description of a planar layered conguration, despite
the mass density of the sample being the same. The surfaces Sk

dened by F(x, t) ¼ kd* are, therefore, monitoring the points in
space of equal mass density as the time t evolves. These surfaces
are the two dimensional analogues of the very familiar one-
dimensional contours, the isobars, which appear on two-
dimensional air pressure charts. The contours on such charts
represent the locations of air at certain xed pre-assigned
magnitudes of pressure and these contours can evolve on the
chart with time, yet they always represent the originally
assigned values of the air pressure. Similarly, the level sets
dened by eqn (12) represent the positions in space of the
smectic layers where the mass density is concentrated and these
surfaces can analogously evolve and change position as time
progresses. We remark that the smectic layers, dened by level
sets, need not remain equidistant, as pointed out by Maxwell44

in his pioneering work on level surfaces.
Consider the lamellar system represented in Fig. 2. It proves

convenient to take an initial conguration at t ¼ 0 that consists
of layers that are delimited by equidistant surfaces denoted by
S*
k where k ¼ 0, 1, 2, ., as shown in Fig. 2(a). If we set xk ¼ kd*

Fig. 2 Lamellae in reference configuration at t ¼ 0 (a) and current configuration
at t > 0 (b).
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where d* is the previously dened common distance between
two adjacent surfaces, then such surfaces are dened as the
level sets of F*(X) ¼ xk, k ¼ 0, 1, 2, 3, . with

F*(X) h F(x(0),0) ¼ a*$X ¼ xk (13)

where a* is a constant vector normal to the surfaces and X¼ x(0)
is the position of a point at t¼ 0 on the kth delimiting surface S*

k.
Next, consider the distortion of the lamellar system at some

xed time t > 0 depicted in Fig. 2(b). Let x0 be an arbitrary xed
point on the distorted surface S0, x0 ˛ S0. The shortest distance
from x0 to the distorted surface S1, which is denoted by d, must
be taken along a direction perpendicular to the surface S1 at
some point x1 ˛ S1, as shown in Fig. 2(b) (which may or may not
be unique). This direction is given by the unit vector normal to
S1 evaluated at x1 (for deniteness, we will take as the positive
direction for this normal to be the one directed towards surface
S1 from S0, that is, along the direction of the surfaces Sk as their
index k increases). In other words, there exists d such that the
vector distance between the two points x0 and x1 at a xed time
t, which belong to the level surfaces dened by F(x0, t) ¼ x0 and
F(x1, t) ¼ x1, respectively, can be written as

x1 # x0 ¼ d
VFðx1Þ
jVFðx1Þj

; (14)

where, for notational brevity, we have suppressed the depen-
dence on the xed value t. It then follows from a Taylor
expansion that68

F(x0) ¼ F(x1 # h) ¼ F(x1) # h$VF(x1) + R(x1,h), (15)

where

h ¼ d
VFðx1Þ
jVFðx1Þj

; jRðx1; hÞj=khk/0 as khk/0 (16)

with k k denoting the Euclidean norm. In this case, khk ¼ d and
hence whenever d * 1 (for example, if the interlayer spacing is
small compared to the lateral dimensions of the smectic layer
surface) it is seen that

d+ ¼ x1 # x0 ¼ Fðx1Þ # Fðx0Þ9: d
VFðx1Þ
jVFðx1Þj

$VFðx1Þ: (17)

It follows immediately that

d*9
:
djVFðx1Þj; (18)

and therefore, for small interlayer distances, we have the
relationship

d

d+ ¼ jVFj#1; (19)

where the dependence of VF on the xed values x1 and t has
been omitted for ease of notation. Thus rVFr#1 represents the
current local interlayer distance measured in units of the
reference interlayer distance d*. It follows from eqn (19) that
there is a compression of the lamellar structure (relative to
the initial conguration) when rVFr > 1 and a dilation when
rVFr < 1. We remark that the ratio d/d* need not be close to

unity, despite d and d* being small, and that consequently rVFr
need not be close to unity.

The relative extension or compression in the local interlayer
spacing, 3, which is namely the strain, can be written in a
standard form as

3 ¼ 1# d

d*
¼ 1# jVFj#1: (20)

The corresponding energy per unit area of S1, w1, is given by

w1 ¼
1

2
k

!
1# d

d*

"2

¼ 1

2
kjVFj#2ð1# jVFjÞ2; (21)

where k (N m#1) is analogous to the stiffness constant for one-
dimensional solids and VF is evaluated at x1 and a xed time t.
Thus the interlayer spacing behaves as a linear elastic spring
with stiffness k.

In the above arguments, x0 has been chosen arbitrarily in S0

and served to dene x1 ˛ S1. It follows that the complete energy,
W1, for one single layer with delimiting surfaces S0 and S1 is the
integral of w1 over the surface S1, that is,

W1ðtÞ ¼
1

2
k

ð

S1

jVFðx; tÞj#2ð1# jVFðx; tÞjÞ2dS1; (22)

where x ˛ S1. The energy presented in eqn (21) has a clear
analogue when extending it to the surface S2. Thus, the energies
for two smectic A layers such as a lipid bilayer can be obtained
by integrating eqn (21) appropriately over the two surfaces S1

and S2 and adding the results. It is easily seen that the complete
energy for a lamellar system of n layers, with n $ 2, is then
generally given by

Wn ðtÞ ¼
Xn

i¼1

ð

Si

widSi

¼ 1

2
k
Xn

i¼1

ð

Si

jVFðxi; tÞj#2ð1# jVFðxi; tÞjÞ2dSi; (23)

with xi ˛ Si. Note that VF may be quite different on distinct
layers.

The stiffness k can be estimated for lipid bilayers by using an
analogy with smectic liquid crystals. Following themethodology
outlined elsewhere53 for example, we may choose to set

k ¼ B0d*, (24)

as an approximation to k when constructing the energy density
contribution for a single layer. Here, B0 is the well known
compression constant that arises in smectic A liquid crystals.

3.2 Continuum case

When modeling arbitrarily many layers in smectic A liquid
crystals, we observe, as pointed out by Capriz,13 that the number
of layers in a sample is oen so great that the interlayer spacing
can be considered extremely small in relation to the combined
thickness of the smectic A sample. Thus, while for a discrete
number of layers the function F in eqn (12) is indexed by the
discrete values xk, for an innite number of layers such a
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function can be indexed by the continuous real variable x. Then,
eqn (12) can be replaced by

F(x, t) ¼ x, (25)

where we also include dependence on the time t$ 0. The time t
can be xed for the discussion that follows so that the layer
structure at any arbitrary time is considered. For notational
brevity, we will suppress the dependence on the xed value t.
The level sets dened by eqn (25) then describe the smectic
surfaces, denoted by Sx and indexed over the continuous vari-
able x at some given time t. It follows that the unit normal to
each of these surfaces is given by

a ¼ VFðxÞ
jVFðxÞj

; (26)

where a is evaluated at x ˛ Sx.
From a modeling perspective, it proves convenient to let x

have the dimension of length and let it represent the shortest
distance of the surface represented by S*

x from some xed origin
in an initial conguration at t ¼ 0. In this initial conguration,
the surfaces S*

x are equidistant planes dened by

F*(X) h F(x(0),0) ¼ a*$X ¼ x, (27)

where, as before, a* is a constant vector normal to the surfaces
and X ¼ x(0) is the position of a point at t ¼ 0 on the surface S*

x.
For any given xed value of x, F*(X) ¼ x represents one partic-
ular planar surface in the initial conguration located such that
its shortest distance from the origin is x. Thus, in order to
assign a physically meaningful representation to x, we can take
it to be multiples of the common initial smectic interlayer
spacing d*. During any subsequent disturbance to the smectic
liquid crystal at t > 0 it is supposed that F(x, t) ¼ x. In other
words, for each x and t xed, F ¼ x is a level set (with constant
value x) which represents the location of one particular smectic
layer, following the description introduced above. A non-
dimensionalization is possible, as discussed by Capriz,13 so that
x may be replaced by integer values n ˛ Z. This alternative
description, also adopted by Blake and Virga,10 will not be
pursued here.

Following Capriz,13 consider an arbitrary point x1 on the
distorted surface Sx1

, x1 ˛ Sx1
. Let x2 be the closest point to x1 on

the distorted surface Sx2
dened by x2. Then there exists a scalar

increment with the dimension of length, labelled Dh, such that

x2 ¼ x1 + aDh, (28)

with a dened by eqn (26) and evaluated at x ¼ x2. Thus, by
setting Dx h x2 # x1, one has that

Dx ¼ F(x2) # F(x1) ¼ F(x1 + aDh) # F(x1), (29)

and therefore

Dx

Dh
¼ Fðx1 þ aDhÞ # Fðx1Þ

Dh
: (30)

By taking the limit as Dh tends to zero, we nd that the right-
hand side of eqn (30) tends to the derivative of x with respect to

h, dx/dh, while the le-hand side tends to the directional
derivative DF$a ¼ rVFr, evaluated at x2. Hence,

dx

dh
¼ jVFj: (31)

In the above equation, dh/dx can be interpreted as a measure
of the number of smectic layers per original initial interlayer
length, and so it is the continuum analogue of d/d* in the
discrete case considered earlier. Therefore, a corresponding
measure of the compression or extension of the layered
medium, analogous to eqn (20), is given by

3 ¼ 1# dh

dx
¼ 1# jVFj#1: (32)

Similar to the discrete case, there is a compression of
the smectic layer structure when rVFr > 1 and a dilation when
rVFr < 1.

It is now straightforward to see that the analogue of the
energy contribution in eqn (21) is actually, in smectic A liquid
crystals, a compression energy per unit volume, wc, given by52

wc ¼
1

2
B0

!
1# dh

dx

"2

¼ 1

2
B0jVFj#2ð1# jVFjÞ2; (33)

where B0 (N m#2) is analogous to the Young's modulus for one-
dimensional solids and VF is evaluated at x2 and t. The total
bulk energy, Wc, in a sample volume V is therefore given by

Wc ¼
ð

V

wcdV ¼ 1

2
B0

ð

V

jVFj#2ð1# jVFjÞ2dV : (34)

The analogy between a discrete system of lamellae such as
lipid bilayers and smectic A liquid crystals is evident when a
comparison is made between the total energy expressions in
eqn (23) and (34) via the approximation (24). Indeed, if we take
the limit as n / N with a correspondingly suitable simulta-
neous decrease in the value of d* between layers, then in eqn
(23) we see that, approximately,

k
Xn

i¼1

ð

Si

widSizB0d*
Xn

i¼1

ð

Si

widSizB0

ð

V

wcdV : (35)

Thus there is a direct correspondence between the energy for a
discrete numbers of lamellae in eqn (23) and the energy for
smectic A liquid crystals in eqn (34).

4 Applications to inclusion-induced
deformations

Consider a planar lipid bilayer with volume V having a cylin-
drical inclusion of radius R and height 2hR. The lipid bilayer can
be assumed to have radial symmetry in the direction of the r-
axis about the central z-axis of a cylindrical coordinate system as
depicted in Fig. 3. Let us denote by 2hN the height of the lipid
bilayer far away from the inclusion where r / N as shown in
Fig. 3(a).

Following May's work,45 the function h ¼ h(r) denes the
height of the planar lipid bilayer, the function b ¼ b(r) denes
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the length of the lipid molecule, and the variable !r shown in
Fig. 3(b) is dened such that, for r $ R,

!r ¼ r # b(r)sin q(r), (36)

h(!r) ¼ b(r)cos q(r), (37)

where q ¼ q(r) is the function that denes the angle formed
between the director of the lipid molecules and the z-axis. Let
d ¼ d(r) be the function that denes the angle formed between
the normal to the lipid bilayer and the z-axis. It can be shown
from a careful consideration of the geometry that

tan dðrÞ ¼ dhðrÞ
dr

¼ dhðrÞ
dr

dr

dr

¼ b0 ðrÞcos qðrÞ #bðrÞsin qðrÞq0 ðrÞ
1#b0ðrÞsin qðrÞ #bðrÞcos qðrÞq0 ðrÞ ; (38)

or, equivalently, that

dðrÞ ¼ arctan

!
b0 ðrÞcos qðrÞ #bðrÞsin qðrÞq0 ðrÞ

1#b0ðrÞsin qðrÞ #bðrÞcos qðrÞq0 ðrÞ

"
: (39)

Following our notation, in the coordinate system shown in
Fig. 3, the layer normal a that appears in eqn (4) can be written
for r $ R as

a ¼ #sin d(r)r + cos d(r)z, (40)

while the director n for r $ R has the form

n ¼ #sin q(r)r + cos q(r)z. (41)

Given eqn (5), the function F ¼ F(r, z) describing the layer
structure can be found by solving the linear partial differential
equation dened by

a ¼ VF

jVFj
: (42)

Thus, it readily follows that67

vF

vr
¼ #sin dðrÞ; vF

vz
¼ cos dðrÞ; vF

vr
þ tan dðrÞ vF

vz
¼ 0: (43)

By using the methods of characteristics, the solution to
eqn (42) for a dened in eqn (40) is found to be

F ¼ c(z # u (r)), (44)

where c is a dimensionless constant that can be set to unity. As
noted in the previous sections, the surfaces that delimit the
lipid layer are dened as the level sets of eqn (44) and are, thus,
independent of the value of c. The function u ¼ u(r) is the
nonlinear displacement of the layer that is equal to

u ðrÞ ¼ u ðNÞ #
ðN

r

tanðdðtÞÞdt (45)

where we can assume that u(N) ¼ 0. The height of the planar
lipid bilayer dened by the function h¼ h(r) is related to u(r) via
the following

h(r) ¼ hN + u (r). (46)

It follows easily from eqn (44) and (45) that

VF ¼ #tan d(r)r + z, |VF| ¼ sec d(r). (47)

Next, we will determine each of the energy density proposed
in eqn (4) and, except for the Ka

1 term, its corresponding line-
arized version. We will show hereaer that the linearized
version of the energy density in eqn (4) coincides with the one
proposed by May (eqn (3) in May's manuscript,45 page 19). We
note that

V$a ¼ # sin dðrÞ
r

# cos dðrÞd0 ðrÞ; (48)

and

V$n ¼ #sin qðrÞ
r

# cos qðrÞq0 ðrÞ: (49)

Then the Ka
1 term in eqn (4) takes the form

1

2
Ka

1 ðV$aÞ
2¼ 1

2
Ka

1

!
sin dðrÞ

r
þ cos dðrÞd0 ðrÞ

"2

(50)

while the Kn
1 term becomes

1

2
Kn

1 ðV$n# s0Þ2¼
1

2
Kn

1

!
sin qðrÞ

r
þ cos qðrÞq0ðrÞ þ s0

"2

: (51)

The above Kn
1 term can be approximated in q by

1

2
Kn

1 ðV$n# s0Þ2 9:
1

2
Kn

1

!
qðrÞ
r

þ q0ðrÞ þ s0

"2

: (52)

Let us consider the saddle-splay term in eqn (4) and recall
that

1

2
K2V$½ðn$VÞn# ðV$nÞn) ¼ 1

2
K2

h
tr
#
ðVnÞ2

$
# ðV$nÞ2

i
: (53)

Fig. 3 Cylindrical inclusion in a planar lipid bilayer (a) and its section (b).
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With the specic choice of n presented in eqn (41), it can be
easily shown that

tr
#
ðVnÞ2

$
¼ ðcos qðrÞÞ2ðq0ðrÞÞ2þðsin qðrÞÞ2

r2
; (54)

ðV$nÞ2¼ ðsin qðrÞÞ2

r2
þ ðcos qðrÞÞ2ðq0ðrÞÞ2þ 2

r
sin qðrÞcos qðrÞq0ðrÞ;

(55)

from which it follows that

1

2
K2V$½ðn$VÞn# ðV$nÞn) ¼ #K2

sin qðrÞcos qðrÞq0ðrÞ
r

: (56)

The K2 term in eqn (4) can be approximated to the rst order
in q by

1

2
K2V$½ðn$VÞn# ðV$nÞn) 9: # K2

qðrÞq0 ðrÞ
r

: (57)

We now consider the compression–expansion term in
eqn (4), which has been described in more detail in Section 3.
By using eqn (47) we have that

|VF|#1(|VF| # 1) ¼ 1 # cos d(r). (58)

and, hence, the B0 term takes the form

1

2
B0jVFj#1ðjVFj# 1Þ ¼ 1

2
B0ð1# cos dðrÞÞ2: (59)

The above expression can be rewritten using May's notation as

jVFj#1ðjVFj# 1Þ ¼ 1# hðrÞ
hN

; (60)

where hN is the reference interlayer distance which remains
unchanged away from the inclusion and h(!r)¼ b(r)cos q(r) is the
current interlayer distance as dened in Fig. 3. Moreover, we
note that hN ¼ bN where bN represents the length of the lipid
molecule in the reference conguration or away from the
inclusion. Given eqn (60) and the previous remarks, the B0 term
in eqn (4) can be written as

1

2
B0jVFj#2ðjVFj# 1Þ2¼ 1

2
B0

!
1#bðrÞcos qðrÞ

bN

"2

; (61)

which can be approximated in q by

1

2
B0jVFj#2ðjVFj# 1Þ2 9: 1

2
B0

!
1#bðrÞ

bN

"2

: (62)

The coupling term in eqn (4) with a and n dened in eqn (40)
and (41), respectively, takes the form

1

2
B1

h
1# ðn$aÞ2

i
¼ 1

2
B1

'
1# cos2ðqðrÞ # dðrÞÞ

(

¼ 1

2
B1sin

2ðqðrÞ # dðrÞÞ; (63)

which can be approximated in d and q to

1

2
B1

h
1# ðn$aÞ2

i
9
: 1

2
B1ðqðrÞ # dðrÞÞ2: (64)

The function d(r) presented in eqn (39) can be then approx-
imated to the rst order in q, q0, b, and b0 to

dðrÞ9: arctanðb0ðrÞÞ9: b0ðrÞ; (65)

and, therefore, eqn (64) in terms of b0(r) becomes

1

2
B1

h
1# ðn$aÞ2

i
9
: 1

2
B1ðqðrÞ #b0ðrÞÞ2: (66)

Finally, by using eqn (49) and (58), the B2 term in eqn (4) can
be expressed as

B2ðV$nÞ
#
1# jVFj#1

$
¼ B2

!
# sin qðrÞ

r
# cos qðrÞq0ðrÞ

"

&ð1# cos dðrÞÞ: (67)

In May's notation, the above term can be approximated to
the rst order in q to

B2ðV$nÞ
#
1# jVFj#1

$
9
: B2

!
qðrÞ
r

þ q0ðrÞ
"!

bðrÞ
bN

# 1

"
: (68)

The sum of the approximated terms presented in eqn (52),
(57), (62), (66) and (68) gives the energy density, wM, presented
by May45 for a planar lipid bilayer with a cylindrical inclusion:

wM ¼ 1

2
Kn

1

!
qðrÞ
r

þ q0ðrÞ þ s0

"2

#K2

qðrÞq0ðrÞ
r

þ 1

2
B0

!
1#bðrÞ

b0

"2

þ1

2
B1ðqðrÞ #b0ðrÞÞ2

þ B2

!
qðrÞ
r

þ q0ðrÞ
"!

bðrÞ
b0

# 1

"
:

(69)

It must be noted that the material parameters are denoted
differently in the energy presented by May:45 k ¼ Kn

1, !k ¼ #K2,
K ¼ B0, r ¼ B2, kt ¼ B1.

By means of eqn (50), (51), (56), (61), (63) and (67), the energy
density in eqn (4) can be written as

wDS ¼
1

2
Ka

1

!
sin dðrÞ

r
þ cos dðrÞd0ðrÞ

"2

þ 1

2
Kn

1

!
sin qðrÞ

r
þ cos qðrÞq0ðrÞ þ s0

"2

#K2

sin qðrÞcos qðrÞq0ðrÞ
r

þ 1

2
B0ð1# cos dðrÞÞ2þ1

2
B1sin

2ðqðrÞ # dðrÞÞ

# B2

!
sin qðrÞ

r
þ cos qðrÞq0ðrÞ

"
ð1# cos dðrÞÞ:

(70)

In the next section, we will focus on solving the boundary
value problems that are derived from the energy density (69)
used by May45 and the energy density (70) proposed here. For
the planar lipid bilayer considered hereaer s0 ¼ 0 in eqn (69)
and (70).

4.1 Boundary value problems

The total energy, W, for the planar lipid bilayers depicted in
Fig. 3(a) is

W ¼
ð

V

wdV ; (71)
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where V is the volume of the planar lipid bilayer and w ¼ wM(r,
q(r), q0(r), b(r), b0(r)) or w ¼ wDS(r, q(r), q0(r), d(r), d0(r)). The equi-
librium equations can be determined by minimizing the above
total energy using variational methods.31 Since q ¼ q(r), d ¼ d(r)
and b ¼ b(r), the minimization of eqn (71) can be reduced via
symmetry to the minimization of the total energy, ~W , dened as

~W ¼
ð

V~

wd ~V (72)

where V ̃ is the section of lipid bilayer shown in Fig. 3(b). It can
be easily shown that

~W ¼ p

2

ðN

R

dr

ðhðrÞ

0

rwdz: (73)

By following May's approach,45 hðrÞ ¼ hR þ hN
2

is assumed to be

constant so that the above integral can be approximated by

~Wz
pðhR þ hNÞ

4

ðN

R

rwdr: (74)

It is convenient to set ŵ ¼ rw. A necessary condition for the
total energy ~W to have an extremum is that the Euler–Lagrange
equations are satised.31 Thus, for ŵ ¼ rwM,

vŵ

vq
# d

dr

 
vŵ

vq0

!

¼ 0;
vŵ

vb
# d

dr

 
vŵ

vb0

!

¼ 0; (75)

while, for ŵ ¼ rwDS,

vŵ

vq
# d

dr

 
vŵ

vq0

!

¼ 0;
vŵ

vd
# d

dr

 
vŵ

vd0

!

¼ 0: (76)

The Euler–Lagrange equations for the energy density w¼ wM

are the following:

2B1bNr2(q # b0) # Kn
1bN(r2q0 0 + rq0 # q) # B2r

2b0 ¼ 0, (77)

bNB2(rq
0 + q) + 2B1b

2
N[q # b0 + r(q0# b0 0)] +B0r(b# bN) ¼ 0, (78)

while, for the energy density w ¼ wDS, they are:

Kn
1cos q[(1 + r2q02)sin q # r(q0 + rq0 0)cos q]

# B1r
2sin(#q + d)cos(#q + d) + B2r

2d0cos qsin d ¼ 0, (79)

Ka
1cos d[(1 + d02r2)sin d # r(d0 + rd0 0)cos d]

+ B1r
2sin(#q + d)cos(#q + d) + B0r

2(1 # cos d)sin d

# B2r(sin q + rq0cos q)sin d ¼ 0. (80)

We impose the following boundary conditions to solve the
system of eqn (77) and (78):

qðRÞ ¼ p

6
rad; (81)

q0(N) ¼ 0 rad m#1, (82)

b(N) ¼ 2.5 & 10#9m, (83)

b0(N) ¼ 0. (84)

The condition qðRÞ ¼ p

6
rad is typical for smectic liquid

crystals.27 The solution functions q¼ q(r) and b ¼ b(r) (and their
derivatives) can thus be computed by solving eqn (77) and (78)
with the above boundary conditions. InMay's formulation, once
these functions are determined, the function h ¼ h(r), which
denes the height of the lipid bilayer, and the function d ¼ d(r),
which denes the normal to the layer, can be obtained from
eqn (36) and (37) and eqn (39), respectively. From eqn (39) one
can compute the value of d(r) at the inclusion, where r ¼ R, and
the value of d0(r) away from the inclusion, where r ¼ N. These
values are found to be

d(R) ¼ 0.72 rad, (85)

d0(N) ¼ 0 rad m#1. (86)

The solution functions of the Euler–Lagrange equations
derived from wDS are determined using the boundary condi-
tions given in eqn (81) and (82) and using the values of d(R) and
d0(N) in eqn (85) and (86) computed as previously described.
This procedure is employed in order to match the boundary
conditions of the two systems of differential equations, eqn (77)
and (78) and eqn (79) and (80), which have different sets of
unknown functions. In our formulation, aer determining the
solution functions, d(r) and q(r), the height of the lipid bilayer is
computed using eqn (45) and (46).

5 Results

The energy densities dened in eqn (69) and (70) were
compared by solving the equilibrium eqn (77) and (78) with
boundary conditions dened in eqn (81)–(84), and the equi-
librium eqn (79) and (80) with boundary conditions dened in
eqn (81), (82), (85) and (86). These boundary value problems
describe the equilibrium congurations of a planar lipid
bilayer with a cylindrical inclusion as depicted in Fig. 3(a).
The values of the parameters in the energy densities were
xed to those listed in Table 1 while the geometrical dimen-
sions of the system and boundary conditions are listed in
Table 2. The coupled systems of nonlinear ordinary differen-
tial equations were solved numerically in Maple 12 (Mapleso
Inc.) by using the solver dsolve with a midpoint algorithm
midrich method.

The solution function q ¼ q(r), which denes the tilt of the
lipid molecules inside the planar lipid bilayer, is presented in
Fig. 4. As expected, the angle q, which is set to be p/6 at R ¼
1 nm, decreases as the radius r increases and reaches zero as r
grows relatively large at around 10 nm. It can be clearly seen in
Fig. 4 that the tilt of the lipid molecules predicted using the
proposed energy density is more pronounced than the one
predicted using May's energy density away from the inclusion.
Moreover, in May's predictions, the tilt of the lipid molecules
becomes zero more rapidly as r goes to N.

The solution function d¼ d(r) of the boundary value problem
derived from the newly proposed energy density is shown in
Fig. 5. This function denes the normal to the lipid bilayer and,
in our formulation, characterizes the displacement of the lipid

This journal is ª The Royal Society of Chemistry 2013 Soft Matter, 2013, 9, 2056–2068 | 2063

Paper Soft Matter

Pu
bl

is
he

d 
on

 0
3 

Ja
nu

ar
y 

20
13

. D
ow

nl
oa

de
d 

by
 V

irg
in

ia
 T

ec
h 

on
 1

2/
12

/2
01

9 
2:

00
:1

8 
PM

. 

View Article Online



layer via eqn (45). Although d(r) is not directly computed as a
solution of the boundary value problem derived from May's
energy density, it can be easily computed from eqn (39) once the
solution functions, q(r), q0(r), b(r), b0(r), are obtained. The value
of d(r) decreases as the radius increases according to both
models. It can be noted that, when the radius of the bilayer
becomes greater than 2 nm, the difference between the values of
d(r) determined by the two boundary value problems is signi-
cant. The results show that, by considering the fully nonlinear

terms in the energy density, greater changes in the normal to
the lipid layer are predicted.

The height of the lipid bilayer can also be determined via
eqn (36) and (37) in May's model and eqn (45) and (46) in the

Table 1 Material parameters: Ka1, Kn
1 and K2 are based on values for a typical

nematic liquid crystal.61 The value of B0 is consistent with the estimate given by
Kléman and Parodi42 for a typical smectic A liquid crystal. The estimate for B1 is
based on the assumption that it may be comparable in magnitude to B0.56 The
constant B2 is based on the inequalities in eqn (9)

Material parameter Numerical value

Ka
1 5 & 10#12 N

Kn
1 5 & 10#12 N

K2 4 & 10#12 N
B0 8 & 105 N m#2

B1 8 & 105 N m#2

B2 10#7 N m#1

Table 2 Parameters used for the boundary value problems. Note that d(R) was
computed from eqn (39) after finding q(R), q0(R), b(R), and b0(R) by solving the
boundary value problem derived from May's energy density

Parameter
(De Vita and Stewart)

Parameter
(May) Numerical value

u(N) None 0 m
hN hN 5 & 10#9 m
R R 1 & 10#9 m
N N 1 & 10#8 m
q(R) q(R) p

6
rad

q(N) q(N) 0 rad
d(R) None 0.72 rad
d(N) None 0 rad
None b(N) 25 & 10#9 m
None b0(N) 0 rad m#1

Fig. 4 Solution function q ¼ q(r) determined by solving the boundary valued
problems derived from the newly proposed energy density in eqn (70) and the
linearized energy density in eqn (69).

Fig. 5 Solution function d ¼ d(r) determined by solving the boundary valued
problems derived from the newly proposed energy density in eqn (70) and the
linearized energy density in eqn (69).

Fig. 6 The height of the bilayer, h(r), determined by solving the BVP derived
from eqn (70) (De Vita and Stewart's model) and eqn (69) (May's model) versus
the radius r.

Fig. 7 The height of the bilayer, h(R), versus the angle, q(R), formed by the
director with the z-axis at the inclusion where r ¼ R (orange line). The nonline-
arities are better appreciated graphically when compared with a line (black
dotted line).
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proposed model (Fig. 6). As expected, the height is found to
decrease close to the inclusion where r ¼ 1 nm. In particular,
the height of the lipid bilayer is shown to decrease more for the
boundary value problem derived from the proposed energy
density. This is expected since, in the proposed formulation, the
deformations are not assumed to be small.

The effect of various parameters or conditions on the solu-
tion of the boundary value problem derived from the proposed
energy density can also be analyzed. For example, in Fig. 7 the
height of the lipid bilayers at the inclusion, h(R), is plotted as a
function of the angle q(R) that determines the orientation of the
lipid molecules. The relationship between h(R) and q(R) appears
to be nonlinear and, as q(R) increases, h(R) decreases.

6 Discussion

A new energy density was proposed to describe the equilibrium
congurations of lipid bilayers. The energy accounts for the
smectic A liquid crystalline structure of lipid bilayers, the
decoupling between the layer normal and director, and large
deformations. Analogies between the compression–expansion
term of liquid crystals and lipid bilayers have also been pre-
sented in detail. The proposed theoretical framework was tested
by solving the boundary value problem derived when studying
the deformation of a planar lipid bilayer induced by a cylin-
drical inclusion. The solution was directly compared with the
solution of an equivalent boundary value problem obtained
from a linearized version of the energy that was used in an
earlier study by May.45 The deformations of the layer and
distortions of the molecules were larger than those found using
May's approach.

There has been much relatively recent activity on smectics
and lipid bilayers which has attempted to deploy various
versions of appropriate energy densities. The search for a
rigorous and detailed approach that can be quite general has
been the objective of the present article. Consideration is given
for a separation between the usual director and layer normal,
directions that are presumed coincident in the classical litera-
ture.24 The coupling between the deformations of lipid layers
and lipid molecules has been considered by several
authors.30,34,42,45,46 These authors have, however, limited their
analyses to small deformations and neglected some terms in
the energy density to derive boundary value problems that are
mathematically tractable. The results presented in Section 5
demonstrated the applicability of the proposed energy density
and allowed comparisons with the earlier related work of
others, including that by May.45

The energy density stated in eqn (4) has been derived from
rst principles in a systematic and general way. The contribu-
tion linked to Kn

1 was rst considered rigorously by Frank28 in
the context of ‘splay’ in the director alignment in general liquid
crystals; the Ka

1 term is analogous to this in the context of the
local lamellar layer normal. The expression for the B0 term is a
development from the work initiated by Kléman and Parodi41

and developed by Capriz,13,14 and Capriz and Napoli16 and
Napoli.51,52 The contribution of the B1 term originates from the
concept of director tilt separating from the local layer normal,

rst discussed for smectic A liquid crystals by Ribotta and
Durand.57 The interplay between compression and the separa-
tion of the director from the layer normal has been discussed in
statics by Stewart62 and the present authors,25,26 and by Stewart
and Stewart63 in the context of an applied electric eld. This
separation has also been investigated in terms of basic ow
problems by Auernhammer et al.,3–5 Soddemann et al.60 and
Stewart and Stewart.64 The B2 term is a generalized version of
that rst introduced by May.45

The analogies between the compression–expansion terms
for lamellar systems and smectic A liquid crystals have been
presented. We remark that the results in eqn (19) and (20) (with
their analogues in eqn (31) and (32)) were mentioned by Kléman
and Parodi41 for the specic case of smectic A liquid crystals.
These authors approximated the compression–expansion
energy density by assuming small deformations. Thus, eqn (20)
was replaced by 31 h 1 # rVFr, an approximation that was
introduced by Bidaux et al.7 and widely used throughout the
literature thereaer; it is linearly equivalent in modulus to 3 h
1 # rVFr#1 for small gradients. An alternate strain can also be
introduced as 32 h (1 # rVFr2)/2, as considered by Kamien and
Santangelo,40 who investigated its applications in the work of
Kamien et al.39 To linear order in the lamellar displacement,
these three energy densities have the same modulus and lead to
the same results; to see this, one can simply express 3 and 32 in
terms of 31 via the substitution rVFr¼ 1# 31 and expand to rst
order in 31.41 The differences among 3, 31, 32 are only being
apparent when nonlinear terms are included. Nevertheless, the
forms in eqn (20) and (32) that arise from the relationships (19)
and (31) have a natural interpretation: the magnitude of the
gradient of F is largest when the level surfaces are closest
together, as should be expected of level sets. This is perhaps the
main reason why Capriz,13 Capriz and Napoli16 and Napoli52

adopted 3.
Some comments are in order regarding the values adopted

for the material parameters in Table 1, some of which are based
on well-established experimental values for lamellar smectic
phases while others are estimates obtained via the inequalities
in eqn (9). In the absence of specic experimental values for the
elastic constants Ka

1 and Kn
1 for lipid bilayers, the values used

here are typical for smectic materials. It is well known from the
work on biaxial smectic C phases17,21,61 that these constants,
which are expected to have comparable magnitudes,4 are
similar to the Frank splay constant K1 arising in general uniaxial
liquid crystals. It has been calculated that K1 ,5 & 10#12 via a
typical classical Helfrich–Hurault instability,61 as quoted in
Table 1. The elastic constant K2 is a familiar saddle-splay
constant that arises from the elastic theory of nematic liquid
crystals and has been selected to satisfy, in conjunction with Kn

1

and Ka
1, the a priori estimates in eqn (9). The compression

constant B0 has been estimated for many smectic A systems to
be of order 106 N m#2,19,41 in line with the adopted value in
Table 1. The coupling constant B1 is relatively novel and was
rst introduced by Ribotta and Durand56 and developed further
by Oswald and Ben-Abraham,54 Auernhammer et al.3,4 and
Soddemann et al.;60 it has been estimated from energetic
considerations56 that B1 should be comparable to B0 in
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magnitude or smaller and this has been taken into account for
the estimate in Table 1. The value of B2 stated in Table 1 has
been chosen to satisfy the inequalities in eqn (9). Both B1 and B2
have not been experimentally conrmed with any great accu-
racy, but an experiment to determine B1 has been suggested63

and the inuence of B1 upon shear ow in smectic A has been
investigated theoretically.3,60,64 The work presented in this
article will hopefully encourage the design and development of
directly relevant experiments for the measurement of the
material parameters in lipid bilayers and related lamellar
systems. It is through experimental data that the physical
signicance of such parameters can be identied.

One limitation of this and other studies45 is in the assump-
tion that the height of the layer, h(r), as the limit of integration

in eqn (73), has a constant average value, here set to be
hR þ hN

2
.

This assumption was made to simplify the derivation of the
boundary value problems via variational methods but it is likely
that this approach introduces some error. The height of the
lipid layer, h(r), can be computed through eqn (37) in May's
formulation and eqn (46) in our formulation only aer nding
the solution functions of the corresponding boundary value
problems.

The energy density presented in eqn (4) will no doubt form
the basis for more extensive discussions and investigations on
smectics and lipid bilayers in complex geometries. It can be
applied to describe different geometrical congurations of lipid
bilayers under various loading scenarios and boundary condi-
tions and allow more intricate analyses of dynamics.62

Depending on the specic problem tackled, other energetic
contributions will need to be included such as, for example,
surface tension and anchoring.25,26

The validity of the developed theoretical framework needs to
be veried through experiments on lipid bilayers in which both
the distortions of the layers and the lipid molecules can be
quantied at molecular length scales. These challenging
experiments may require the development of new methods in
X-ray microscopy. Nevertheless, despite the lack of direct vali-
dation with experimental data, our continuum model thus far
appears to be promising: it provides results that are, qualita-
tively, in agreement with molecular dynamics66 and coarse
grained simulations.69
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