
Reduced Order Model Closures: A Brief
Tutorial

William Snyder, Changhong Mou, Honghu Liu, Omer San, Raffaella De Vita,
and Traian Iliescu

1 Introduction

Reduced order models (ROMs) are computational models whose dimensions are
orders of magnitude lower than the dimensions of the full order models (FOMs) (i.e.,
models obtained from classical numerical methods, e.g., the finite element method).
Because ROMs are relatively low-dimensional, their computational cost is orders
of magnitude lower than the computational cost of FOMs. Thus, ROMs represent
a promising alternative to FOMs in computationally intensive applications, e.g.,
digital twins of wind farms and real-time surgical procedures. ROMs are expected
to play a key role in establishing mathematical modeling foundations for digital
twins of many engineering, healthcare, and environmental systems. Indeed, if ROM
results are nearly indistinguishable from the corresponding FOM results, then they
can contribute as predictive tools in emerging digital twin infrastructures. However,
despite being successfully used in simple, academic test problems, ROMs have not
made a significant impact in complex, practical applications.

One of the main hurdles in the ROMs’ development is their notorious inaccuracy
when they are used in the under-resolved regime, i.e., when the ROM’s dimension
(i.e., its number of degrees of freedom (DOF)) is not large enough to capture
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the complex dynamics of the underlying system. To illustrate the under-resolved
regime, think of the numerical simulation of the flow around a wind farm. This
simulation with a FOM (e.g., the finite element method) generally requires millions
(if not billions) of DOF. Thus, performing shape optimization or real-time control of
the wind farm flow, which would require many individual FOM runs, is not feasible.
Replacing the costly FOM with a ROM would be a natural choice. However, in
order to represent the turbulent flow dynamics in the wind farm simulation would
require thousands or tens of thousands of DOF in the ROM. Despite the ROM’s
cost being much lower than the FOM cost, it is still too high to allow the use of
the ROM in real-time control applications, where thousands of ROM runs would
be required. Thus, a practical choice would be to use much cheaper ROMs, i.e.,
ROMs with much fewer (e.g., hundreds or even tens) DOF. However, these low-
dimensional ROMs, although computationally efficient (and, therefore, practical),
generally yield inaccurate results. The reason is simple: these ROMs do not have
enough DOF to represent the complex dynamics of a complex flow such as the
turbulent wind farm flow.

The above discussion yields the following two important conclusions:

1. The under-resolved ROM regime is critical in realistic, complex applications.
2. Under-resolved ROMs produce inaccurate results.

These conclusions naturally lead to the following question:

•? Q0

How do we fix the under-resolved ROMs?

The answer to Q0 is simple:

•> A0

We develop good ROM closure models, i.e., correction terms that increase the
standard ROM’s accuracy.

To our knowledge, the first (and only) survey of ROM closure models was
performed in [1], where the authors discuss dozens of ROM closures for fluids that
have been developed over the last four decades. We are not aware, however, of a
tutorial on ROM closures. This paper takes a first step at filling that gap.

This brief tutorial on ROM closures (also known as parameterizations [5, 10, 11,
16, 17, 34, 53] and hidden dynamics [40, 41]) is structured as a sequence of simple
questions and answers that lead the reader from a simple PDE to projection ROMs,
and then to ROM closures. Our paper is aimed at first year graduate students and
advanced undergraduate students. Thus, we strive to keep the technical details to a
level that is easily understood by students with a standard background in differential
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equations and numerical methods. We also emphasize that our goal in this tutorial is
not to explain the “how,” but the “why.” That is, we carefully explain the principles
used to develop ROM closures, without focusing on particular approaches (which
are carefully discussed in [1]).

The rest of the paper is organized as follows: In Sect. 2, we illustrate the ROM
closure modeling concept for a three-dimensional toy problem. In Sect. 3, we
present the general algorithm used to develop the classical Galerkin ROM. In Sect. 4,
we first present the ROM closure problem, and then we discuss its solution, i.e., the
ROM closure model. In Sect. 5, we construct the data-driven variational multiscale
ROM, in which available data is used to build the ROM closure model. In Sect. 6,
we illustrate how closure modeling can significantly increase the ROM accuracy in
the numerical simulation of fluid flows. In Sect. 7, we survey current mathematical
results for ROM closure modeling. Finally, in Sect. 8, we present conclusions and
future research avenues.

2 A Crash Course in ROM Closure: A Toy Problem

Before carefully presenting the ROM closure modeling in the next sections, we
illustrate the underlying concepts and principles for a toy problem. These concepts
and principles are broadly illustrated in the schematic in Fig. 1, which is adapted
from Fig. 1 in [3].

To present our toy problem, we first assume that the FOM solution, uFOM , can
be accurately approximated by only three ROM basis functions:

uFOM(x, t) ≈ a1(t)ϕ1(x) + a2(t)ϕ2(x) + a3(t)ϕ3(x), (1)

where ϕ1,ϕ2,ϕ3 are the ROM basis functions, and a1, a2, a3 are the sought time-
dependent coefficients. Of course, for complex systems, one should use many more
(e.g., hundreds and even thousands of) ROM basis functions to accurately approxi-
mate uFOM . However, to graphically illustrate the need for closure modeling in our
toy problem, we assume that three ROM basis functions are enough.

Next, we use the three ROM basis functions in the Galerkin framework to
construct the Galerkin ROM (G-ROM). Details regarding the G-ROM construction
are given in Sect. 3. For the purpose of the toy problem illustration in this section,
we just note that the resulting G-ROM is a three-dimensional dynamical system that
can be written as follows:

⎡
⎣ȧ1

ȧ2

ȧ3

⎤
⎦ =

⎡
⎣F1(a1, a2, a3)

F2(a1, a2, a3)

F3(a1, a2, a3)

⎤
⎦ , (2)

where F1, F2, and F3 are the components of the ROM operators, e.g., vectors,
matrices, and tensors, which are presented in Sect. 3. Since the three ROM basis
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Projection error

Closure error

Fig. 1 A schematic representation of the ROM closure modeling for a three-dimensional toy
problem. The goal is to reduce the three-dimensional G-ROM (2) (black curve and equations)
to the most accurate two-dimensional ROM. The I-ROM (3) (blue curve and equations) is the most
accurate ROM obtained in the Galerkin framework, but it is not closed (since it depends on a3).
The two-dimensional G-ROM (4) (red curve and equations) is closed, but it is not accurate (since
we simply ignore the a3 contribution). The two-dimensional G-ROM supplemented with a closure
model (5) (green curve and equations) is closed and more accurate than the two-dimensional G-
ROM (4) since the closure terms τ1(a1, a2) and τ2(a1, a2) aim at steering the green curve toward
the blue curve

functions yield an accurate approximation of the FOM solution in (1), the three-
dimensional G-ROM in (2) is expected to yield an accurate approximation to uFOM .
That is, solving the three-dimensional G-ROM (2) for a1, a2, a3, and then plugging
these values back into (1) yields an accurate approximation to uFOM . In Fig. 1,
the time evolution of the solution of the accurate three-dimensional G-ROM (2) is
represented as the black curve.

At this point, we invoke the need to reduce the computational cost of the three-
dimensional G-ROM (2). Specifically, we aim at constructing a two-dimensional
ROM that is as accurate as possible (preferably, as accurate as the three-dimensional
G-ROM (2)). For our toy problem (1), this amounts to constructing a dynamical
system for a1 and a2 (assuming that the first two ROM basis functions dominate the
third, as is often the case; see Sect. 3).

Of course, reducing the ROM dimension from three to two does not yield such a
great reduction of computational time. We emphasize, however, that we consider
this reduction only to illustrate the ROM closure modeling concept for our toy
problem. In practical settings, ROMs reduce the FOM dimension by orders of
magnitude.
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The most natural way to construct an accurate two-dimensional ROM is to keep
only the first two equations in (2) and discard the third equation:

[
ȧ1

ȧ2

]
=

[
F1(a1, a2, a3)

F2(a1, a2, a3)

]
. (3)

Mathematically, this amounts to first using a Galerkin expansion for all three ROM
basis functions (i.e., using (1)), and then using a Galerkin projection onto only the
first two basis functions (instead of projecting onto all three basis functions, as done
in (2)).

In Fig. 1, the time evolution of the solution of the efficient, two-dimensional
ROM (3) is represented as the blue curve. Of course, since we perform a Galerkin
projection only onto the first two basis functions, we incur an error, which we denote
as the (Galerkin) projection error (the blue dashed lines in Fig. 1). Nevertheless, it
stands to reason that, in the Galerkin framework with the basis {ϕ1,ϕ2,ϕ3}, the
two-dimensional ROM (3) is the most accurate two-dimensional ROM we can hope
to get. This is why we call the two-dimensional ROM (3) the ideal ROM (I-ROM).
However, the two-dimensional I-ROM (3) has a big problem: It is not closed since
the equations for a1 and a2 depend on a3. This is the ROM closure problem.

So how do we solve the ROM closure problem? The easiest way to solve the
ROM closure problem is to simply ignore it. That is, we can simply ignore the a3
contribution to the dynamics in (3):

[
ȧ1

ȧ2

]
=

[
F1(a1, a2, 0)

F2(a1, a2, 0)

]
. (4)

The ROM in (4) is two-dimensional and closed (since the equations depend only
on a1 and a2). In Fig. 1, the time evolution of the solution of this two-dimensional
ROM (4) is represented as the red curve. Of course, since in (4) we simply ignored
the a3 contribution to the correct dynamics of a1, a2 given by (3), we incur an error,
which is generally called the closure error (the red dashed lines in Fig. 1).

Remark 1 (Galerkin Closure is a Relative Concept) We note that if we start with
just two ROM basis functions ϕ1 and ϕ2, the Galerkin ROM framework (which is
presented in Sect. 3 and outlined in Algorithm 1) yields a two-dimensional G-ROM
that satisfies exactly the equations in (4). Thus, the ROM closure concept is relative
to the ROM space used in the Galerkin framework:

• If we start with two basis functions, the Galerkin method yields the two-
dimensional G-ROM (4), which is closed.

• If, however, we start with the larger (three-dimensional) ROM space spanned
by ϕ1,ϕ2, and ϕ3, the discussion in this section shows that the most accurate
two-dimensional ROM obtained by a direct truncation of the three-dimensional
G-ROM (2) (i.e., the I-ROM (3)) is not closed.
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Remark 2 (Galerkin Closure is a General Concept) We emphasize that, although
our discussion focuses exclusively on ROMs, the Galerkin closure is a general
concept that is associated with the classical Galerkin framework. Thus, there is no
surprise that, over half a century, closure has been addressed in different contexts:
large eddy simulation (LES) [6], variational multiscale (VMS) methods [24],
subgrid-scale (SGS) methods [21, 33], and nonlinear Galerkin (NG) methods [20].

At this point, it is probably a good idea to summarize our discussion. As
illustrated in the schematic in Fig. 1, the reader interested in constructing the most
accurate two-dimensional G-ROM has reached a crossroads:

• On the one hand, the I-ROM (3) is the most accurate two-dimensional ROM that
we can get by using the Galerkin framework, but it is not closed.

• On the other hand, the G-ROM (4) is closed, but we are incurring the closure
error.

This is as far as the classical Galerkin framework can take us. We’re stuck. So what
do we do next?

The answer, as many times in numerical methods, is to take a middle of the
road approach. Specifically, we construct a ROM closure model and add it to the
G-ROM (4):

[
ȧ1

ȧ2

]
=

[
F1(a1, a2, 0) + τ1(a1, a2)

F2(a1, a2, 0) + τ2(a1, a2)

]
, (5)

where τ1(a1, a2), τ2(a1, a2) are the components of the ROM closure model, i.e.,
correction terms that aim at steering the inaccurate G-ROM (4) as close as possible
to the accurate (but not closed) I-ROM (3). In Fig. 1, the time evolution of the
solution of the closed ROM (5) is represented as the green curve.

How do we construct the ROM closure model in (5)? We answer this question in
Sect. 5. But first, in Sect. 3, we present the main steps in the G-ROM construction.

3 Galerkin ROM (G-ROM)

Over the past four decades, projection ROMs have been used in the numerical
simulation of fluid flows [8, 22, 23, 39, 42, 49]. In this tutorial, we exclusively
consider projection ROMs that use numerical or experimental data to find the “best”
basis, which is then used together with the Galerkin method to construct the ROM.
In this section, we present the main steps in the construction of the Galerkin ROM.

To illustrate the Galerkin ROM construction, we start with a generic PDE for the
dynamics of a variable of interest, u:

ut = f (u) , (6)
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Algorithm 1 Galerkin ROM (G-ROM) algorithm
1: Use numerical or experimental data to construct modes {ϕ1, . . . ,ϕR}, which represent the

recurrent spatial structures in the system (6).
2: Choose the dominant modes {ϕ1, . . . ,ϕr }, r ≤ R, as ROM basis functions.
3: Use a Galerkin expansion ur (x, t) = ∑r

j=1 aj (t) ϕj (x).
4: Replace u with ur in (6), and then on both sides of (6) take the inner product with each mode

ϕi , i = 1, . . . , r . That is, perform a Galerkin projection of the PDE (6) onto the ROM space
Xr := span{ϕ1, . . . ,ϕr }. The obtained Galerkin ROM (G-ROM) is of the form

•
a = F (a), (7)

where a(t) = (ai(t))i=1,...,r is the vector of coefficients in the Galerkin expansion in step 3
and F comprises the ROM operators.

5: In the offline stage, compute the ROM operators (e.g., vectors, matrices, and tensors), which
are preassembled from the ROM basis.

6: In the online stage, repeatedly use the G-ROM (7) for longer time intervals.

equipped with appropriate boundary conditions and initial conditions. In Algo-
rithm 1, we list the main steps in the Galerkin ROM construction.

Remark 3 (ROM=d2G) The main steps in the G-ROM (7) construction presented
in Algorithm 1 are straightforward. In principle, they are the same steps as those
used to construct classical Galerkin methods, e.g., the finite element method (FEM).
The fundamental difference between the G-ROM and the FEM is that the former
uses a data-driven basis, whereas the latter uses a universal basis (i.e., piecewise
polynomials). Thus, one could think of the projection ROMs that we discuss in this
tutorial as data-driven Galerkin (d2G) methods.

Next, we explain some of the steps in Algorithm 1.

ROM Basis (Step 1)
To construct the ROM basis, we first collect snapshots from the simulation of the
FOM. If we are interested in time prediction (as in the numerical illustration in
Sect. 6), the snapshots can be FEM approximations of (6) at the time instances
t1, . . . , tM , i.e., u1

h, . . . ,u
M
h , respectively. (If (6) depends on parameters, we can

also build a ROM basis for parameter prediction [22, 42].) Next, we use these
snapshots to construct the modes {ϕ1, . . . ,ϕR}, which represent the recurrent
spatial structures in the system described by (6). Different approaches can be used
to construct the ROM basis functions, e.g., (i) the proper orthogonal decomposition
(POD) [8, 23, 31, 49, 51]; (ii) the reduced basis method (RBM) [22, 42]; (iii)
the proper generalized decomposition (PGD) [15]; and (iv) clustering [9]. In this
tutorial, to fix ideas, we exclusively use the POD to generate the ROM basis.

For a careful presentation of the POD basis, the reader is referred to, e.g., [23]
(for a physical presentation) and to [51] (for a mathematical presentation). In this
paper, however, we only briefly discuss the qualitative properties of the POD basis
functions, which we will later use in our numerical illustration in Sect. 6. The reason
for our brief qualitative discussion of the POD basis is that ROM closure modeling
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does not depend on the particular type of ROM basis functions used. That is, our
presentation of ROM closure modeling remains the same for any type of ROM basis
used in a Galerkin framework, whether it is POD, RBM, or PGD.

The main principle used to construct the G-ROM basis can be stated as follows:
Use the available snapshots to find the ROM basis that “best” represents the
system’s dynamics. Since this is the “best” basis, for certain problems, one can
hope to use much fewer basis functions to construct the G-ROM than to construct,
e.g., FEM models. For example, instead of using millions or even billions of
basis functions as in FEM simulations, one can hope to use tens or hundreds
basis functions in the G-ROM construction. This choice of “best” basis yields
computational models (i.e., ROMs) whose dimension can be orders of magnitude
lower than the dimension of FEM models. (This also explains the term “reduced” in
the ROM terminology.)

Of course, a natural question is what the “best” ROM basis means. In fact, there
are many proposals for the “best” ROM basis, and each proposal yields a different
class of ROMs (e.g., POD, RBM, or PGD, to name just a few). For example, given
a set of snapshots, the POD basis is the orthonormal basis that yields the minimum
projection error with respect to a chosen norm (e.g., the L2 norm) [51].

However, independent of the approach used to construct them, the ROM basis
functions generally share several qualitative features. To illustrate this, in Fig. 2 we
plot the Euclidian norm of two POD basis functions, ϕ1 and ϕ10, and two FEM basis
functions, φh

1 and φh
10, for a 2D flow past a circular cylinder [37]. One can clearly

see the significant differences between the POD basis functions (top two plots) and
the FEM basis functions (bottom two plots). Indeed, the POD basis functions have
global support (i.e., they can be nonzero over the entire computational domain),
whereas the FEM basis functions have local support (i.e., they are one at one mesh
point and zero everywhere else). To further illustrate the different characteristics of
the POD basis, in Fig. 3 we plot the Euclidian norm of two POD basis functions, ϕ1
and ϕ10, for soft tissue modeling [48]. Comparing these two POD basis functions
with the POD basis functions in the top two plots of Fig. 2, we can clearly see that
different physical systems (i.e., the soft tissue in Fig. 3 and the flow in Fig. 2) yield
fundamentally different POD basis functions. We emphasize that this is in complete
contrast with classical numerical methods, such as the FEM. Indeed, the FEM basis
functions are universal basis functions, i.e., they have the same shape (piecewise
polynomials and local support) for all the problems. In contrast, the POD basis
functions (and ROM basis functions in general) change their shape when we change
the problem. This can be clearly seen by comparing the top two plots of Fig. 2 with
the plots of Fig. 3.

Galerkin ROM Construction (Steps 2–6)
To illustrate the G-ROM construction, we use the Navier-Stokes equations (NSE) as
a mathematical model:

∂u

∂t
− Re−1�u + u · ∇u + ∇p = 0 , (8)
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Fig. 2 2D flow past a circular cylinder: (a) Euclidian norm of ROM basis functions ϕ1 and ϕ10 at
mesh points. (b) Euclidian norm of FEM basis functions φh

1 and φh
10 at mesh points. Note that the

ROM basis functions are fundamentally different from the FEM basis functions: The former have
global support, whereas the latter have local support

∇ · u = 0 , (9)

where u is the velocity, p the pressure, and Re the Reynolds number. We
consider the NSE posed on a bounded spatial domain in either R

2 or R
3, and

supplemented with homogeneous Dirichlet boundary conditions and an appropriate
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Fig. 3 Soft tissue modeling: Euclidian norm of ROM basis functions ϕ1 and ϕ10 at mesh points

initial condition. The NSE (8)–(9) can be cast in the general form (6) by choosing
f (u) = Re−1�u − u · ∇u (after applying the Leray projection, which maps the
vector field into the divergence-free subspace of the underlying state space) [50].

To construct the G-ROM for the NSE, we follow Steps 2–6 in Algorithm 1. That
is, we choose the first r basis functions from the modes constructed in Step 1, use a
Galerkin truncation

ur (x, t) =
r∑

j=1

aj (t)ϕj (x), (10)

replace u with ur in the NSE (8), and project the resulting PDE onto the ROM
space, Xr . Furthermore, we apply the divergence theorem to the diffusion term and
the pressure term. This yields the G-ROM [37]:

•
a = A a + a� B a, (11)

where a(t) is the vector of unknown coefficients aj (t), 1 ≤ j ≤ r in the Galerkin
expansion (10). The ROM operator A in (11) is an r × r matrix that corresponds to
the diffusion term in the NSE (i.e., −Re−1�u) and has entries

Aim = −Re−1 (∇ϕm,∇ϕi

)
, 1 ≤ i, m ≤ r , (12)

where (·, ·) denotes the L2 inner product. The ROM operator B in (11) is an r×r×r

tensor that corresponds to the nonlinear term in the NSE (i.e., u ·∇u) and has entries

Bimn = −(
ϕm · ∇ϕn,ϕi

)
, 1 ≤ i, m, n ≤ r . (13)

We note that the pressure term in the G-ROM (11) vanishes since we assumed
that the ROM modes are discretely divergence-free (which is the case if, e.g., the
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snapshots are discretely divergence-free). ROMs that provide a pressure approxi-
mation are discussed in, e.g., [18, 22].

Once the matrix A and tensor B are assembled in the offline stage, the G-
ROM (11) is a relatively low-dimensional, efficient dynamical system that can be
used in the online stage for longer time intervals (or more parameter values, e.g.,
Re [22, 42]).

4 The Closure Problem and Its Solution: The Closure Model

This section has two goals: In Sect. 4.1, we motivate the need for ROM closure
modeling in the under-resolved regime, i.e., we describe the ROM closure problem.
In Sect. 4.2, we show how to solve the ROM closure problem, i.e., we show how
to construct a ROM closure model. To this end, we give the definition of the ROM
closure model, show that using the exact closure model (i.e., using the ideal ROM)
increases the ROM accuracy, and finally outline the main steps in the ROM closure
model construction.

4.1 The Closure Problem

The G-ROM (11) constructed in Sect. 3 is appealing from the computational point
of view: The G-ROM can significantly reduce the dimension (and, thus, the
computational cost) of classical numerical discretization (e.g., FEM) models by
orders of magnitude. So one can ask the following natural question:

•? Q1

What is wrong with G-ROM?

The short answer to Q1 is: It depends on the resolution. Specifically:

•> A1

It depends on whether we are in the resolved regime or the under-resolved regime.

• In the resolved regime (i.e., when there are enough ROM basis functions
{ϕ1, . . . ,ϕr} to accurately represent the underlying dynamics), the G-ROM
produces accurate results.
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• In the under-resolved regime (i.e., when there are not enough ROM basis
functions {ϕ1, . . . ,ϕr} to accurately represent the underlying dynamics), the G-
ROM produces inaccurate results.

But then one can ask the following questions:

•? Q2

Why is the under-resolved regime important? Why do we need to worry about it?

•> A2

Many important applications (e.g., atmospheric boundary layer flows, digital twins
of wind farms, and anisotropic and heterogeneous biological tissues) are centered
around multiscale systems that require a large number of ROM basis functions.
However, to ensure a low computational cost in these applications, under-resolved
G-ROMs are generally used.

4.2 The Closure Model

In Sect. 4.1, we defined the ROM closure problem, and we explained why it is
important. In this section, we present the solution to the ROM closure problem.
That is, we answer the following question:

•? Q3

What is the solution to the closure problem?

•> A3

The solution to the closure problem is the closure model. That is, replace the G-
ROM (11) with

•
a = F (a) + τ (a), (14)

where τ (a) is the closure model, which represents the effect of the discarded ROM
modes {ϕr+1, . . . ,ϕR} on the ROM dynamics.
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Note that A3 is a vague definition, which begs the following questions: What
exactly does “model the effect” mean? What exactly does τ (a) in (14) actually
model?

Answering these natural questions is not straightforward. To do so, we need to
extend the Galerkin framework. This sounds like a daunting task, but it turns out
to be relatively simple. The “trick” is to rethink the space we use in the Galerkin
framework:

In the resolved regime, the ROM space Xr := span{ϕ1, . . . ,ϕr} is the only space
we will ever need, since everything happens in Xr . Thus, in the resolved regime, G-
ROM should (and generally does) work just fine.

However, in the under-resolved regime we need two spaces: (i) the resolved
space Xr , and (ii) the unresolved space Xr ′ := span{ϕr+1, . . . ,ϕR}. To keep the
ROM dimension (and, therefore, its computational cost) low, we want to work in
the resolved space, Xr . However, to increase the ROM accuracy, we should do our
best to model the contribution to the ROM dynamics made by the dynamics in the
unresolved space, Xr ′

. But this sounds like a lot of work (both in terms of modeling
and computation). So the following is a natural question:

•? Q4

Does Xr ′
have a significant effect on the ROM dynamics?

•> A4

Yes.

The answer A4 is simple. In Sect. 4.2.1, we introduce the ideal ROM, which adds
the exact closure term to the classical G-ROM. The ideal ROM results clearly show
why the effect of Xr ′

should be modeled. Specifically, we show that the ideal ROM
results are dramatically more accurate than the G-ROM results. Thus, we conclude
that modeling the exact ROM closure term is beneficial to ROM accuracy.

4.2.1 The Ideal ROM (I-ROM)

To present the ideal ROM, we first need to define the spaces of resolved ROM
scales (i.e., Xr ) and unresolved ROM scales (i.e., Xr ′

). To this end, we extend
the variational multiscale (VMS) framework proposed by Hughes and his group
two decades ago in the FEM context. We note, however, that there are other
ways of defining the spaces of resolved and unresolved ROM scales, e.g., spatial
filtering [37].
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First, we leverage the orthonormality of the ROM basis functions and construct
the two orthogonal spaces, Xr and Xr ′

, as follows:

Xr := span{ϕ1, . . . ,ϕr} and Xr ′ := span{ϕr+1, . . . ,ϕR}. (15)

The space Xr represents the space of the resolved ROM scales, i.e., the spatial
scales that are explicitly approximated by a given r-dimensional ROM. In contrast,
the space Xr ′

represents the space of the unresolved ROM scales, i.e., the spatial
scales that are not explicitly approximated by the chosen ROM. We note that since
the ROM basis functions are generally ordered from the most important to the
least important (with respect to a physical criterion, e.g., kinetic energy [23]), the
decomposition in (15) is natural. We also note that since we are concerned with the
under-resolved regime that often occurs in practical applications, we consider the
case when r � R.

The next step in the construction of the ideal ROM is to extend the Galerkin
framework to the space XR := Xr ⊕ Xr ′

, which is the maximal ROM space (i.e.,
the space spanned by all the snapshots). Thus, we use the ROM approximation of
both resolved and unresolved scales, i.e., we utilize uR ∈ XR defined as

uR =
R∑

j=1

aj ϕj =
r∑

j=1

aj ϕj +
R∑

j=r+1

aj ϕj = ur + u′ , (16)

where ur ∈ Xr represents the resolved ROM component of u, and u′ ∈ Xr ′

represents the unresolved ROM component of u. Next, we plug uR in the generic
equation (6), project the resulting equation onto Xr , and use the ROM basis
orthogonality to show that

(
uR,t ,ϕi

) = (
ur,t ,ϕi

)
, ∀ i = 1, . . . , r , where uR,t

and ur,t are the time derivatives of uR and ur , respectively. Following these steps,
we obtain the ideal ROM (I-ROM):

(
ur,t ,ϕi

) = (
f (ur ) ,ϕi

) + (
f (uR) ,ϕi

) − (
f (ur ) ,ϕi

)
︸ ︷︷ ︸
τ I−ROM= ideal ROM closure term

, ∀ i = 1, . . . , r. (17)

The last two terms in (17) yield the ideal ROM closure term, τ I−ROM , which
represents the effect of the discarded ROM modes {ϕr+1, . . . ,ϕR} onto the
dynamics of the resolved ROM scales, ur . Using the expansion (16), the I-ROM (17)
can be written as the following dynamical system for the vector of ROM coefficients
of the resolved scales:

•
a = F (a) + τ I−ROM(a1, . . . , ar , ar+1, . . . , aR). (18)

The above discussion clearly shows that, from a mathematical point of view, the
correct equations satisfied by the coefficients of the resolved ROM scales are the
I-ROM equations (18) instead of the G-ROM equations (11). However, we need to
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Fig. 4 2D flow past a circular cylinder. The Euclidian norm of the error, uFOM − uROM , at mesh
points for G-ROM (11) (top) and I-ROM (17) (bottom). The I-ROM error is significantly lower
than the G-ROM error, which illustrates the potential benefit of ROM closure modeling

ask ourselves whether this mathematical framework has a practical impact (i.e., we
need to ask question Q4). Specifically, we need to check whether the I-ROM results
are better than the G-ROM results.

In Fig. 4, we present results for the I-ROM (18) and the G-ROM (11) in the
numerical simulation of a two-dimensional flow past a circular cylinder. These
plots clearly show that the I-ROM performs significantly better than the classical
G-ROM. Thus, these results suggest that including a model for the I-ROM closure
term, τ I−ROM , could increase the ROM accuracy.

Remark 4 (The Closure Model Increases Accuracy) There is a lot of confusion in
the ROM community (and not only) regarding the role of the closure model. In
this section, we tried to emphasize that the main role of the ROM closure model
is to increase the accuracy of the G-ROM. Indeed, in Eq. (14), adding the closure
term, τ (a), to the classical G-ROM yields a more accurate model (in the extended
Galerkin framework).

That being said, in many important practical applications (e.g., convection-
dominated flows), the G-ROM’s inaccuracy often manifests itself in the form
of spurious numerical oscillations. Thus, a popular misconception (at least in
computational fluid dynamics) is that the only role of the ROM closure model is
to eliminate/alleviate these numerical oscillations, i.e., to increase the numerical
stability of the G-ROM.

However, we emphasize that, while numerical stability of the model is necessary
(indeed, if the model is accurate, then it has to be stable), it is not sufficient. For
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example, we can add a very large stabilization term to the classical G-ROM. This,
most likely, will stabilize the model, but will also degrade its accuracy.

To summarize, we emphasize that ROM closure modeling is not simply about
adding numerical stabilization. Instead, ROM closure modeling is about adding
the “right” amount of numerical stabilization (i.e., the amount of stabilization that
makes the model accurate).

4.2.2 Closure Model Construction

The I-ROM results in Sect. 4.2.1 clearly show that the effect of Xr ′
should be

modeled. We emphasize, however, that the I-ROM itself does not represent a
practical solution since it depends on the coefficients of the discarded ROM modes,
ar+1, . . . , aR , which we do not model in our ROM (since we work in Xr ).

•? Q5

How do we make the I-ROM (18) practical?

•> A5

We construct a closure model, τ , which is an approximation in Xr of the I-ROM
closure term, τ I−ROM :

τ I−ROM(a1, . . . , ar , ar+1, . . . , aR) ≈ τ (a1, . . . , ar ). (19)

Since τ in (19) lives in Xr , it can be computed with the available ROM data, and,
thus, can be used in practical computations.

Remark 5 (Closure=Correction) Equation (14) shows that the closure model, τ ,
in (19) can be interpreted as a correction term that is added to the G-ROM (11) to
correct its dynamics in XR . So do we really need I-ROM in order to construct the
closure model? In Sect. 5, we will show that the I-ROM is needed when we construct
data-driven ROM closures. Furthermore, we note that the I-ROM derivation explains
the closure model terminology. Indeed, τ I−ROM(a1, . . . , ar , ar+1, . . . , aR) shows
that the I-ROM (17) is closed in XR , but not in Xr .

ROM closure models are of three types: (i) Functional, which use physical
insight to construct the closure model; (ii) Structural, which use mathematical tools;
and (iii) Data-driven, which use available data. The three types of ROM closure
models are surveyed in [1]. In this tutorial, we take a different approach and, for
clarity of presentation, focus on data-driven approaches, which have experienced a
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tremendous development over the last few years. Specifically, in the next section,
we present the data-driven variational multiscale ROM closure model.

5 The Data-Driven Variational Multiscale ROM
(D2-VMS-ROM)

In this section, we illustrate how data-driven modeling can be leveraged to construct
the ROM closure model. Specifically, we outline the main steps in the construction
of one data-driven ROM closure model, i.e., the data-driven variational multiscale
ROM (D2-VMS-ROM) that was proposed in [37] (see also [52]). To this end, we
follow the presentation in Section 2.3 in [37] to construct the two-scale D2-VMS-
ROM. (We note that a three-scale D2-VMS-ROM was also proposed and tested in
[37].)

To build the D2-VMS-ROM, we start with the I-ROM (18). As explained in
answer A5, to construct the ROM closure model we need to find an approximation
τ (a1, . . . , ar ) for the I-ROM closure term in (18), τ I−ROM(a1, . . . , ar , ar+1, . . . , aR).
The construction of the data-driven ROM closure model consists of two steps:
(i) postulating a model form ansatz; and (ii) solving a least squares problem to
determine the coefficients of the model form. Next, we outline these two steps.

5.1 Model Form Ansatz

The first step in the construction of the data-driven ROM closure model is to pos-
tulate a model form (ansatz). Specifically, we approximate the I-ROM closure term
τ I−ROM with g(ur ), where g is a generic function whose coefficients/parameters
still need to be determined:

τ I−ROM
i

(17)= (
f (uR) ,ϕi

) − (
f (ur ) ,ϕi

) ≈ (
g(ur ) ,ϕi

)
, i = 1, . . . , r. (20)

5.2 Least Squares Problem

To determine the coefficients/parameters in g used in (20), in the offline stage, we
solve the following low-dimensional least squares problem:
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min
g parameters

M∑
j=1

∥∥∥∥[(
f (uFOM

R (tj )) ,ϕi

) − (
f (uFOM

r (tj )) ,ϕi

)]

− (
g(uFOM

r (tj )) ,ϕi

)∥∥∥∥
2

,

(21)

where uFOM
R and uFOM

r are obtained from the FOM data, and M is the number
of snapshots. Once g is determined, the I-ROM (17) with the I-ROM closure term
replaced by g yields the data-driven VMS-ROM (D2-VMS-ROM):

(
ur,t ,ϕi

) = (
f (ur ) ,ϕi

) + (
g(ur ) ,ϕi

)
, i = 1, . . . , r. (22)

We emphasize that we have a lot of flexibility in choosing the model form
ansatz (20) in the D2-VMS-ROM. For example, for the NSE, we can choose the
following model form: ∀ i = 1, . . . , r,

(
g(ur ) ,ϕi

) = (
Ã a + a�B̃ a

)
i
, (23)

where, for computational efficiency, we assume that the structures of g and f are
similar. Thus, in the least squares problem (21), we solve for all the entries in the
r × r matrix Ã and the r × r × r tensor B̃.

The least squares problem (21) is low-dimensional since there are only (r2 + r3)

entries in Ã and B̃ to be optimized, and r is small. Thus, (21) can be efficiently
solved in the offline stage. For the NSE, the D2-VMS-ROM (22) takes the form

•
a = (A + Ã)a + a�(B + B̃)a , (24)

where A and B are the G-ROM operators in (11), and Ã and B̃ are the VMS-ROM
closure operators in (23).

Remark 6 (Physical Constraints) To improve the D2-VMS-ROM accuracy, one can
use physical constraints when solving the least squares problem (21) to find the
entries of the VMS-ROM closure operators Ã and B̃. Numerical experiments have
shown that imposing physical constraints can indeed increase the D2-VMS-ROM
accuracy [35].

In Algorithm 2, we list the main steps in the construction of ROMs equipped
with data-driven closure models.

6 ROM Closures in Action: Numerical Results

In the previous sections, we tried to convince the reader that ROM closures
are important since they significantly increase the ROM accuracy in the under-
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Algorithm 2 Data-driven ROM closure algorithm
1: Use numerical or experimental data to construct modes {ϕ1, . . . ,ϕR}, which represent the

recurrent spatial structures in the system.
2: Choose the dominant modes {ϕ1, . . . ,ϕr }, r ≤ R, as ROM basis functions.
3: Use a Galerkin expansion uR(x, t) = ∑R

j=1 aj (t) ϕj (x).
4: Replace u with uR in (6).
5: Use a Galerkin projection of the PDE obtained in step 4 onto the space of resolved ROM scales

Xr := span{ϕ1, . . . ,ϕr } to obtain the ideal ROM (I-ROM):

•
a = F (a) + τ I−ROM, (25)

where a(t) = (ai(t))i=1,...,r is the vector of coefficients in the Galerkin expansion in step 3, F

comprises the G-ROM operators, and τ I−ROM is the ideal ROM closure term defined in (17).

6: In the offline stage:

• Compute the G-ROM operators (e.g., vectors, matrices, and tensors), which are preassem-
bled from the ROM basis.

• Choose a model form g for τ I−ROM in (25).
• Solve the least squares problem (21) to find the parameters in the model form.
• Compute G(a), which comprises the ROM closure operators corresponding to the model

form g for τ I−ROM .
• Replace the I-ROM (25) with the data-driven ROM closure model

•
a = F (a) + G(a). (26)

7: In the online stage, repeatedly use the data-driven ROM closure (26) for various parameter
settings and/or longer time intervals.

resolved regime. We note, however, that all our arguments have been mathematical
arguments. Thus, we can ask the following natural question:

•? Q6

Do ROM closures work in practice?

The answer to Q6 is simple:

•> A6

Yes!
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Table 1 2D flow past a
circular cylinder. L2 norm of
errors for G-ROM,
D2-VMS-ROM, and I-ROM
for different r values

r G-ROM I-ROM D2-VMS-ROM

2 1.509e+00 5.987e−02 1.504e−02

3 8.595e−01 5.072e−01 8.024e−02

4 6.583e−01 3.415e−02 2.538e−02

5 7.095e−01 4.197e−01 5.156e−01

6 5.562e−01 2.371e−01 3.132e−02

7 4.760e−01 2.324e−01 6.482e−02

8 2.692e−01 2.122e−01 1.691e−02

The answer A6 is elaborated in the survey in [1], which presents a plethora of
examples of under-resolved ROM simulations of complex dynamics (e.g., turbulent
flows) in which ROM closures significantly increase the accuracy at a modest
computational overhead.

In this section, for clarity of presentation, we illustrate how a specific ROM
closure model (i.e., the D2-VMS-ROM outlined in Sect. 5) increases the ROM
accuracy for the 2D flow past a circular cylinder [37], which is a simple test problem
commonly used in the ROM community. (We note, however, that the D2-VMS-
ROM was successfully used for challenging test problems, e.g., turbulent channel
flow [36] and the quasi-geostrophic equations [38].) In our numerical investigation,
we use a Reynolds number Re = 1000 and four ROM basis functions (i.e., r = 4).
Details of the computational setting can be found in [37].

In Table 1, we list the L2 norm of the error, uFOM − uROM , for G-ROM (11)
(second column), I-ROM (17) (third column), and D2-VMS-ROM (22) (fourth
column). We note that the G-ROM error is relatively large, whereas both the D2-
VMS-ROM and I-ROM error are much smaller than G-ROM. In particular, the
D2-VMS-ROM error is one and even two orders of magnitude smaller than the
G-ROM error for some r values. In Fig. 5, we present plots of the Euclidian norm
of the error at each mesh point at the final time, for G-ROM (11) (top), I-ROM (17)
(middle), and D2-VMS-ROM (22) (bottom). We note that the G-ROM error is
relatively large, whereas the D2-VMS-ROM error is almost negligible. These two
plots clearly show that adding the data-driven closure model to the classical G-
ROM (i.e., using the D2-VMS-ROM) significantly increases the G-ROM accuracy.
Although the I-ROM cannot be used in practical computations (since it is not
closed), we included I-ROM results for comparison purposes. Table 1 and Fig. 5
show that the D2-VMS-ROM is not only more accurate than the standard G-ROM,
but it is almost as accurate as the I-ROM (which includes an ideal closure model).
Thus, for this test problem, the D2-VMS-ROM error almost reaches the theoretical
lower bound given by the I-ROM error. Overall, Fig. 5 clearly shows that closure
models can significantly increase the ROM accuracy in under-resolved simulations.
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Fig. 5 2D flow past a circular cylinder. The Euclidian norm of the error, uFOM − uROM , at
mesh points for G-ROM (11) (top), I-ROM (17) (middle), and D2-VMS-ROM (22) (bottom). The
D2-VMS-ROM error is significantly lower than the G-ROM error, which illustrates the benefit of
ROM closure modeling. Also note that, in this case, the D2-VMS-ROM error almost reaches the
theoretical lower bound given by the I-ROM error

7 Mathematical Foundations of ROM Closures

In Sects. 4 and 5, we discussed the mathematical modeling of ROM closures. In
Sect. 6, we discussed the numerical simulation of ROM closures. The following is
a natural question:

•? Q7

What can we prove about ROM closures?
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The answer to Q7 is simple:

•> A7

Not so much. Yet.

In this section, we briefly summarize some relevant theoretical aspects associated
with ROM closure modeling. Compared with the analysis of classical numerical
schemes [6, 27, 44], the theoretical foundations for ROM closures are much
less developed. We emphasize, however, that recently there have been significant
advancements in this exciting and important research area.

The theoretical investigations of ROM closure modeling generally aim at proving
error bounds for ROM closures of the form

‖uFOM − uROM‖ ≤ C (space error + time error + ROM error) , (27)

where uFOM is the FOM solution, uROM is the ROM solution, ‖ ·‖ is a given norm,
the space error is the error that results from the spatial approximation, the time error
is the error that results from the time approximation, the ROM error is the error
that results from the ROM approximation, and C is a generic constant that does
not depend on the discretization parameters. We note that the first two terms on the
right-hand side of (27) appear in error bounds for classical numerical discretizations,
e.g., the FEM [27]. The third term, however, does not appear in these bounds.

The main purpose of the error bound (27) is to show the convergence of the ROM
solution to the FOM solution. For example, as the spatial mesh size and the time step
go to zero, the space error and time error in (27), respectively, are expected to go to
zero (at a rate that depends on the particular spatial and time discretizations used).
Furthermore, as the number of ROM basis functions goes to the rank of the snapshot
matrix, the ROM error in (27) is also expected to go to zero. Thus, as the right-hand
side of (27) goes to zero, so does the error on the left-hand side of (27), which proves
the convergence of the ROM solution to the FOM solution.

For the G-ROM (11), the numerical analysis started two decades ago with the
pioneering work of Kunisch and Volkwein, who proved the first error bounds for
the POD of parabolic equations, e.g., the heat equation [31] and the Navier-Stokes
equations [32]. More than a decade later, Singler improved Kunisch and Volkwein’s
results, by proving sharper error bounds [47]. Recently, optimal pointwise in time
error bounds were proved in [30]. These results finally bring the G-ROM numerical
analysis to a level comparable to (although not as developed as) the level of the
numerical analysis of the FEM.

For the ROM closure models, the numerical analysis is relatively scarce. The
numerical analysis for ROM closures aims at proving a modified form of the G-
ROM error bound (27):
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‖uFOM − uROM‖ ≤ C (space error + time error + ROM error + closure error) ,

(28)

where the closure error is the error that results from the approximation of the closure
term τ I−ROM in the I-ROM (17) with a closure model.

As mentioned in [1], the first numerical analysis of ROM closures was performed
in [7], where error bounds for the time discretization of the Smagorinsky model (i.e.,
a ROM closure model developed on phenomenological arguments) were proven.
Error bounds for the time and space discretizations of the Smagorinsky model were
later proven in [43] in an RBM context. Error bounds for VMS closure models were
proved in [19, 25, 26, 45] (see also [4, 46] for related work). Finally, error bounds
for the D2-VMS-ROM (22) were proved in [29] (see also [28] for related work).

8 Conclusions and Outlook

In this paper, we presented a brief tutorial for reduced order model (ROM) closures.
In the first part of our tutorial, we motivated the ROM closures. We note that
ROM closure modeling is often misunderstood in the ROM community. Thus, we
started our tutorial by explaining the need for ROM closure modeling (i.e., the
ROM closure problem) in realistic applications, and then we carefully described
the ROM closure model. Specifically, we first outlined the main steps used to
construct the Galerkin ROM (G-ROM), which is based on leveraging a data-driven
basis in the classical Galerkin framework. Next, we noted that, although G-ROM
can decrease the computational cost of standard numerical discretizations by orders
of magnitude, it yields inaccurate results in under-resolved ROM simulations, i.e.,
when the number of basis functions is not enough to capture the underlying system’s
dynamics. To address the G-ROM’s inaccuracy in under-resolved simulations, we
introduced the ROM closure model. We motivated the need for ROM closure by
presenting a mathematical extension of the classical Galerkin framework to include
not only the space of resolved scales, but also the space of unresolved scales. In
this extended variational multiscale framework, we showed that the correct ROM
dynamics include an additional term (i.e., the closure term), which represents the
effect of the unresolved scales. Furthermore, we showed that this mathematical
framework, which we named the ideal ROM (I-ROM), yields numerical results
that are significantly more accurate than the G-ROM results. Thus, we concluded
that a ROM closure model, which is a practical model for the I-ROM closure term,
should be added to the G-ROM to increase its accuracy in realistic, under-resolved
simulations.

In the second part of our tutorial, we outlined the main steps in the construction
of ROM closure models. To simplify our presentation, we focused on one partic-
ular type of ROM closure modeling, i.e., data-driven modeling. Furthermore, we
illustrated this construction for one specific data-driven ROM closure model, i.e.,
the data-driven variational multiscale ROM (D2-VMS-ROM). In our construction,
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we started with the closure term in the I-ROM, and we simply posed the closure
problem as leveraging the available FOM data to find the “best” ROM closure
model. To this end, we first postulated a model form for the ROM closure model.
Then, we solved a least squares problem to find the parameters in the model form
that yield the ROM closure model that is the closest to the ideal ROM closure
model. Finally, we also included numerical results for the two-dimensional flow
past a circular cylinder, which showed that the D2-VMS-ROM was significantly
more accurate than the standard G-ROM, and almost as accurate as the I-ROM.
These numerical results illustrated the significant benefit of ROM closure modeling
in under-resolved simulations.

We hope that this brief tutorial offers a glimpse into the exciting research
field of ROM closure modeling, which has witnessed a significant development
over the past two decades. This research area is currently experiencing a dynamic
development in several directions. One of the most active research directions is
the use of machine learning tools to construct more accurate and more efficient
ROM closure models. Recently, deep learning models have been shown to be
quite effective and computationally efficient in capturing the relationship between
resolved and unresolved scales [2]. However, these models often need large amounts
of training data and their generalization, expressivity, and analysis still remain
mostly challenging.

Another important research direction is the development of ROM closures for
problems in solid mechanics. Although most ROM closure modeling has been
performed in computational fluid dynamics [1], there has been recent work done
in solid mechanics. For example, approximations of the mechanical behavior of soft
tissue showed substantial improvement in accuracy over G-ROM with the addition
of ROM closure terms at a modest computational overhead [48]. The ability of ROM
closure to capture the nonlinearities of soft tissue behavior is especially promising
for its application in biomechanics.

Depending on the applications, one can also couple ROMs with additional
parameterization schemes or surrogate models for some of the unresolved scales
in order to recover more dynamical features of the original system, especially when
the ROMs are constructed for under-resolved dynamical regimes. For instance, in
the context of data assimilation, when observations are only available for the (large-
scale) low-frequency modes, one can design computationally efficient strategies
within the conditional Gaussian framework [12–14] to approximate the dynamics of
the high-frequency (unresolved) modes with quantified uncertainties by a suitable
dynamical model for the unresolved modes.

Finally, providing mathematical support for ROM closures is also an important
research direction. We note that significant mathematical support has been provided
for closures in classical computational fluid dynamics [6, 27, 44]. For ROM closures,
however, only the first steps have been taken and much more remains to be done.
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