
Computers and Mathematics with Applications 152 (2023) 168–180

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

A numerical comparison of simplified Galerkin and machine learning 

reduced order models for vaginal deformations

William Snyder a, Alex Santiago Anaya a, Justin Krometis b, Traian Iliescu c, Raffaella De Vita a,∗

a STRETCH Lab, Department of Biomedical Engineering and Mechanics, Virginia Tech, 330A Kelly Hall, 325 Stanger Street, Blacksburg, 24061, VA, USA
b National Security Institute, Virginia Tech, 1311 Research Center Drive, RM 2016, Blacksburg, 24061, VA, USA
c Department of Mathematics, Virginia Tech, 428 McBryde Hall, 225 Stanger Street, Blacksburg, 24061, VA, USA

A R T I C L E I N F O A B S T R A C T

Keywords:

Galerkin reduced order modeling

Machine learning

Finite elements

Vaginal tearing

Maternal trauma

High-fidelity computer simulations of childbirth remain prohibitively expensive and time consuming, making 
them impractical for guiding decision-making during obstetric emergencies. Cheap computer simulations that 
preserve the accuracy of high-fidelity models can be developed using surrogate modeling. Two common 
approaches to surrogate modeling are physics-based reduced order modeling (ROM) and machine learning 
(ML), with the latter gaining popularity as the scientific computing community seeks to leverage advances 
from other, mostly non-physics-based, computational strategies. Although ROM and ML have been compared 
for various problems, to our knowledge, such a comparison for simulations of vaginal deformations is currently 
missing. This study provides a baseline numerical comparison between methods from these two fundamentally 
different approaches. Since there are many methods falling into each modeling approach, to provide a fair 
and natural comparison, we select a basic model from each category, with each allowing (i) a straightforward 
implementation in commercial software packages, and (ii) use by practitioners with limited experience in the 
field. As a benchmark for the numerical comparison of the ROM and ML approaches, we use the finite element 
(FE) modeling of the ex vivo deformations of rat vaginal tissue subjected to inflation testing to study the effect of 
a pre-imposed tear. From the ROM strategies, we consider a simplified Galerkin ROM (G-ROM) that is based on 
the linearization of the underlying nonlinear equations. From the ML strategies, we select a feed-forward neural 
network to create mappings from constitutive model parameters and luminal pressure values to either the FE 
displacement history (in which case we denote the resulting model ML) or the proper orthogonal decomposition 
(POD) coefficients of the displacement history (in which case we denote the resulting model POD-ML). The 
numerical investigation of G-ROM, ML, and POD-ML takes place in the reconstructive regime. The numerical 
results show that the G-ROM outperforms the ML model in terms of offline central processing unit (CPU) time 
for model training, online CPU time required to generate approximations, and relative error with respect to the 
FE models. The G-ROM achieves superior error performance to the best ML model with 11 POD basis functions. 
With higher-dimensional POD bases, the G-ROM achieves a relative error 3 orders of magnitude lower than that 
of the best ML model with an online CPU time still on the same order of magnitude as the best ML model. The 
POD-ML model improves on the speed performance of the ML, having online CPU times comparable to those 
of the G-ROM given the same size of POD bases. However, the POD-ML model does not improve on the error 
performance of the ML and is still outperformed by the G-ROM for POD bases of size greater than 11. This 
baseline numerical investigation serves as a starting point for future computer simulations that consider state-of-

the-art G-ROM and ML strategies, and the in vivo geometry, boundary conditions, and material properties of the 
human vagina, as well as their changes during labor.
1. Introduction

During childbirth, vaginal tearing is a common occurrence with 
about 80% of vaginal deliveries resulting in some degree of tissue lac-
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eration [1]. The severity of these injuries varies from small tears that 
cause little or no harm to large tears that propagate to the muscles of 
the pelvic floor resulting in long-term complications such as fecal in-

continence, urinary incontinence, sexual dysfunction, and prolapse [2]. 
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Known risk factors for vaginal tears include birth weight, forceps de-

livery, and prolonged second stage of labor [3]. However, no clinical 
technique in obstetrics exists to accurately anticipate the occurrence 
and severity of vaginal tears as well as their propagation to other pelvic 
tissues. Real-time non-invasive prenatal methods are needed to predict 
vaginal tearing during childbirth and establish preventative measures 
and reduce maternal trauma and morbidity. In silico methods that pre-

dict deformations and tears experienced by the vagina during childbirth 
in real time have the potential to become viable non-invasive prognos-

tic models in obstetrics.

The finite element (FE) method is one of the most popular ap-

proaches used to simulate childbirth. The main characteristics and find-

ings of current FE models that investigate the process of childbirth, 
maternal injuries, fetal injuries, and protective clinical measures have 
been recently reviewed [4]. In particular, the tears in the pelvic floor 
muscles have been analyzed using FE methods by Oliviera et al. [5–7]

with the goal of modeling episiotomy during childbirth. However, de-

formations of the vagina (and surrounding tissues) with tears have 
never been described by FE models. Unfortunately, FE models of the 
childbirth are computationally expensive due to the complex geome-

tries and boundary conditions and the nonlinear constitutive models 
that are required to characterize the mechanical behavior of the tis-
sues of the pelvic floor. Thus, the FE method remains impractical for 
real-time predictions of the clinical outcomes of vaginal delivery.

The computational cost of full order models (FOMs) such as FE 
models can be reduced by adopting reduced order modeling (ROM) 
strategies [8–11]. ROM techniques have been applied to simulate the 
deformations of a variety of soft tissue during surgical procedures [12]. 
Proper orthogonal decomposition (POD) and proper generalized decom-

position methods have been implemented for real-time simulations of 
the liver and cornea [13–16]. Sophisticated simulations of cardiac tis-
sues have been approximated via reduced basis approaches [17–19]. 
Deformations of the inferior turbinate have been modeled with vari-

ous ROM techniques as well [20,21]. Recently, we adopted Galerkin 
ROM (G-ROM) methods to simulate the experimentally-observed defor-

mations of vaginal tissue [22]. However, ROMs have not been used to 
simulate how the presence of vaginal tears affects the deformations of 
the vagina.

Alternative methods used to speed up FE models are machine learn-

ing (ML) techniques. These techniques have been applied, in conjunc-

tion with data generated by FE simulations, to model the mechanical 
behavior of soft tissues in real time. Simple regression and decision tree-

based ML techniques have been used to predict deformations of breast 
tissue under compression [23] and the liver during breathing [24]. Sup-

port vector regression and artificial neural networks (NNs) have been 
employed to simulate deformations of the brain afflicted by a tumor 
[25]. Additionally, the stresses of atherosclerotic arterial walls have 
been described by deep neural networks [26]. To reduce output dimen-

sionality and the computational cost of modeling complex systems, ML 
models can incorporate POD used in G-ROM. This POD-ML approach 
has been applied to a variety of problem cases, such as modeling car-

diac electrophysiology [27] or electrostatics and fluid dynamics [28]. 
To the authors’ knowledge, neither ML nor POD-ML techniques have 
been implemented to simulate the deformations of reproductive tissues 
or the mechanics of childbirth.

This study presents the first comparison of two fundamentally dif-

ferent techniques for reduced order modeling, the Galerkin projection-

based ROM and the data-driven NN, to approximate FE-based simula-

tions of torn vaginal tissue. Building on a FOM framework [22] that 
captures the ex vivo micro-structural and mechanical behavior of the 
rat vagina under inflation, we produce new FE simulations of the organ 
having a pre-imposed tear along the axial direction by changing the mi-

crostructure of the organ (i.e., mean preferred fiber orientations) and 
applied luminal pressure (Section 2.1). Both ROM and ML techniques 
are used to approximately reconstruct the linearized FOM solutions 
produced by the final Newton-Raphson iterations of our FE solver (Sec-
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tions 2.2, 2.3, 2.4), and each technique’s performance is measured in a 
Pareto space composed of relative error with respect to the FOM and 
central processing unit (CPU) time required to produce approximations 
(Section 3). We then compare the two techniques, assessing the advan-

tages and limitations of each (Section 4), and, finally, summarize our 
preliminary investigation (Section 5) evaluating the potential of G-ROM 
and ML strategies for the development of real-time computational tools 
to predict vaginal tissue tearing during childbirth.

We emphasize that G-ROM and ML methods used in our numeri-

cal investigation are not state-of-the-art in their respective classes. In-

stead, we utilize simple G-ROM and ML strategies that allow an easy 
implementation in available software packages such as Abaqus and 
TensorFlow, which facilitates their use by practitioners with limited 
experience in ROM and ML. We also stress that the conclusions of our 
numerical investigation are valid only for the two simple G-ROM and 
ML methods used, and cannot be extrapolated to the entire class of 
G-ROM and ML strategies. We believe, however, that this preliminary 
numerical investigation can serve as a stepping stone toward more re-

alistic settings (e.g., complex geometry, boundary conditions, loading 
conditions, and constitutive descriptions) which could provide insight 
into the use of ROMs in computer simulations of childbirth.

2. Methods

2.1. Full order model

In this section, we present the FE models that are used to capture 
the deformations of rat vaginal canals with tears subjected to increasing 
luminal pressure. We first describe the selection of geometry, boundary 
conditions, and constitutive parameters of these models and then the 
solution methods used to obtain training data to create G-ROM, ML, 
and POD-ML models.

2.1.1. Geometry, boundary conditions, and constitutive parameters

In this study, we construct an FE model that describes deforma-

tions of rat vaginas that are induced by increasing luminal pressure. 
All FE simulations were carried out using Abaqus/Standard (Abaqus 
2020, Dassault Systèmes Americas Corp., Waltham, MA) on a 24-core 
Intel® Xeon® Gold6248R CPU @ 3.00 GHz with 191 GB of usable 
RAM. Each simulation used a linear ramp function to increase lumi-

nal pressure from 0 kPa to a given target pressure. Abaqus outputs for 
displacement vectors were recorded at the final step of each ramp func-

tion to create a quasi-static snapshot corresponding to the given target 
pressure on the lumen.

The geometry, boundary conditions, constitutive model, and associ-

ated material parameters of our model were presented in detail in our 
previous study [22]. However, in the current FE model, we considered 
the effect of a pre-imposed tear in the form of an elliptical hole that had 
a length of 5 mm and a width at mid-span of 1.08 mm. The major axis 
of the tear was aligned along the axial direction of the vagina and the 
minor axis was aligned along the hoop direction and centered at mid-

height. Fig. 1 displays the tear in the vagina, the other dimensions of the 
hollow prolate spheroid which approximates the vaginal geometry, the 
boundary conditions, and the coordinate system of the FE model. The 
compressible Holzapfel-Gasser-Ogden (HGO) model for anisotropic hy-

perelastic materials with two families of fibers was selected to describe 
the mechanical response of the vagina [29]. The material parameters of 
this constitutive model were constant (𝑐 = 6 kPa, 𝑘1 = 15 MPa, 𝑘2 = 15, 
𝐷 = 0.05, 𝜅 = 0.25, 𝑁 = 2) with the exception of the mean preferred fiber 
orientations.

The vagina was divided in three anatomical regions (distal, mid, 
and proximal) as shown in Fig. 1(a), each with two different mean pre-

ferred fiber directions. The mean preferred fiber directions of the two 
families of fibers, 𝒂1 = (0, cos𝛽, sin𝛽) and 𝒂2 = (0, cos𝛽, − sin𝛽), and the 
fiber dispersion parameter, 𝜅, were chosen to approximately represent 
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Fig. 1. (a) Isometric, top, and bottom views of the rat vaginal specimen with dimensions and anatomical (proximal, mid, and distal) regions. (b) Boundary conditions 
for the rat vaginal specimen used to simulate inflation testing. The annotations 𝑢𝑥, 𝑢𝑦 , and 𝑢𝑧 denote the translational displacements of nodes at the boundaries. 
The uppermost distal surface was fixed in the hoop and radial directions and subjected to a constant pressure in the axial direction, while the lowermost proximal 
surface was fixed.
Table 1

Mean preferred fiber orientations, 𝛽𝑑 , 
𝛽𝑚, and 𝛽𝑝 , for the distal, mid, and 
proximal regions of the vagina, respec-

tively, used in the FE simulations. The 
orientations were defined relative to 
the hoop direction of the vagina.

Parameter Set 𝛽𝑑 𝛽𝑚 𝛽𝑝

𝜇1 35𝑜 35𝑜 55𝑜

𝜇2 35𝑜 35𝑜 65𝑜

𝜇3 25𝑜 25𝑜 65𝑜

𝜇4 35𝑜 25𝑜 55𝑜

𝜇5 25𝑜 35𝑜 55𝑜

𝜇6 35𝑜 25𝑜 65𝑜

𝜇7 25𝑜 35𝑜 65𝑜

𝜇8 25𝑜 25𝑜 55𝑜

the experimentally measured collagen fiber organization in the tangen-

tial (hoop-axial) plane of the vagina (refer to Figure 10 in [30]). The 
vectors 𝒂1 and 𝒂2 are defined using a pseudo-cylindrical local Cartesian 
coordinate system described in detail in our previous study [22]. The 
angle 𝛽 was defined relative to the hoop direction of the vagina, i.e., 
the hoop direction was at a 𝛽 = 0° angle. In each of the three anatomi-

cal regions of the vagina, the two families of fibers had mean preferred 
fiber orientations defined by ±𝛽. The mean preferred fiber orientations 
in the distal, mid, and proximal regions were assumed to differ based 
on experimental data [30] and be defined by the angles ±𝛽𝑑 , ±𝛽𝑚, and 
±𝛽𝑝, respectively.

2.1.2. Finite element method

In this section, we present the FE method that was used to generate 
the FOM data. In our numerical investigation, the FOM results served 
as training data for the ROM (Section 2.2), the ML (Section 2.3), and 
the POD-ML (Section 2.4) strategies. They were also used as benchmark 
in the evaluation of the ROM, ML, and POD-ML results.

For each of the eight mean preferred fiber orientation combinations 
𝜇1, … , 𝜇8 reported in Table 1, FE solutions at thirty luminal pressures, 
𝑝1 = 2.5 kPa, 𝑝2 = 5 kPa, 𝑝3 = 7.5 kPa, …, 𝑝30 = 75 kPa, were obtained. 
The pressure was incremented from 2.5 kPa to 75 kPa in equal steps of 
2.5 kPa. In total, 𝑛 = 8 × 30 nonlinear systems of equations were solved 
in Abaqus using the Newton-Raphson method. The linearized FE system 
of equations resulting from the final Newton-Raphson iterations of the 
weak form of the equilibrium equations for each set of mean preferred 
fiber orientations and luminal pressures is the following [31]:
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𝑲 (𝑖)𝒖(𝑖) = 𝒇 (𝑖) for 𝑖 = 1,… , 𝑛 , (1)

where 𝑲 (𝑖) is the 𝑚 ×𝑚 tangent stiffness matrix, 𝒇 (𝑖) is the 𝑚 × 1 column 
vector of loads corresponding to a given set of fiber orientations and 
the discrete luminal pressure, and 𝒖(𝑖) is the 𝑚 × 1 column vector of dis-

placements. The integer 𝑚 refers to the number of degrees of freedom 
of each linearized system. We stored the solutions provided by the final 
Newton-Raphson iterations for each set of fiber orientations and lumi-

nal pressures into 𝑛 vectors, {𝒖(1)
𝐹𝑂𝑀

, 𝒖(2)
𝐹𝑂𝑀

, … , 𝒖(𝑛)
𝐹𝑂𝑀

}, each belonging 
to R𝑚. These vectors were then used to build and train the G-ROM and 
ML as described in Sections 2.2, 2.3, and 2.4

The vaginal tissue was meshed in Abaqus using the structured 
scheme of second-order quadratic hexahedral elements (C3D20) [32]. 
A mesh convergence study was performed via ℎ-refinement with the 
maximum element size decreasing from 2 mm to 1 mm in steps of 0.2 
mm. The convergence study considered only a single fiber orientation 
set, denoted by 𝜇1 in Table 1, for which the mean preferred fiber orien-

tations by region were 𝛽𝑑 = 𝛽𝑚 = 35𝑜 and 𝛽𝑝 = 55𝑜. The luminal pressure 
was set to 75 kPa. Meshes of different maximum element size, ℎ, were 
compared using the mesh energy, 𝐸ℎ, given by

𝐸ℎ = 1
2

(
𝒖ℎ

⊤𝑲ℎ𝒖ℎ
)
, (2)

where 𝒖ℎ is the 𝑚 × 1 displacement column vector, and 𝑲ℎ is the 𝑚 ×𝑚

tangent stiffness matrix of the linearized FE system for the chosen fiber 
orientation set and luminal pressure. The matrices 𝑲ℎ and vectors 𝒖ℎ
are recorded from the solution provided by the last Newton iteration. To 
assess convergence, we calculate the mesh energy relative error defined 
as:

(ℎ) =
|||𝐸ℎ −𝐸ℎ𝑚𝑖𝑛

||||||𝐸ℎ𝑚𝑖𝑛

|||
, (3)

where 𝐸ℎ𝑚𝑖𝑛
is the mesh energy associated with the smallest maximum 

element size considered in the convergence study (in this case, ℎ = 1
mm). The mesh energy of the most refined mesh is used as the bench-

mark against which the other mesh energies, 𝐸ℎ, are compared.

The relative mesh energy error values are plotted against the num-

ber of degrees of freedom in the reduced linearized FE systems corre-

sponding to each mesh size in Fig. 2. The “reduced system” excludes 
degrees of freedom at fixed nodes because they have displacement val-

ues of 0 and so do not contribute to the mesh energy. Mesh convergence 
was considered acceptable at ℎ = 1 mm as there was indication of dimin-

ishing returns with increasing mesh refinement. The relative difference 
in mesh energy between ℎ = 1.2 mm and ℎ = 1 mm was only 3.28% com-

pared to a 17.56% difference between ℎ = 1.4 mm and ℎ = 1 mm, and a 
52.68% difference between ℎ = 1.6 mm and ℎ = 1 mm.
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Fig. 2. Mesh convergence study via ℎ-refinement using mean preferred fiber 
orientations given by 𝛽𝑑 = 𝛽𝑚 = 35𝑜 and 𝛽𝑝 = 55𝑜 and luminal pressure 𝑝30 = 75
kPa. The mesh energy relative error is plotted against the number of degrees of 
freedom (DOFs) in the reduced linearized FE system.

The finest mesh contained 576 elements and 3419 nodes. With this 
mesh, given that there were 3 degrees of freedom for each node, the 
linear system described in Eqs. (1) had a total of 10257 linear equations.

2.2. Linearized Galerkin-ROM (G-ROM)

In this section, we outline the construction of the G-ROM for the 
linear systems in Eqs. (1). Moreover, we describe the criteria used to 
assess the G-ROM performance. Here, we use the POD method [9,11]

to determine an orthonormal basis, the POD basis {𝝍 𝑖}𝑙𝑖=1 of size 𝑙, 
𝑙 ≤min{𝑚, 𝑛}, for the set spanned by 𝑛 vectors, {𝒖(1)

𝐹𝑂𝑀
, 𝒖(2)

𝐹𝑂𝑀
, … , 𝒖(𝑛)

𝐹𝑂𝑀
}, 

belonging to R𝑚. These vectors represent the so-called ”snapshots.” 
Thus, in our numerical investigation, the snapshots are solutions of the 
FE systems in Eqs. (1).

Let 𝑼 be the 𝑚 × 𝑛 matrix whose columns are the snapshots: 𝑼 =
[𝒖(1)

𝐹𝑂𝑀
, … , 𝒖(𝑛)

𝐹𝑂𝑀
]. Let 𝑑 ≤ min{𝑚, 𝑛} be the rank of 𝑼 . To compute the 

POD basis {𝝍 𝑖}𝑙𝑖=1 of size 𝑙, we employ the method of snapshots [33,11], 
so we solve the symmetric 𝑛 × 𝑛 eigenvalue problem for 𝝓𝑖:

𝑼⊤𝑼𝝓𝑖 = 𝜆𝑖𝝓𝑖 for 𝑖 = 1,… , 𝑑 , (4)

and then compute the POD basis as follows:

𝝍 𝑖 =
1√
𝜆𝑖

𝑼𝝓𝑖 for 𝑖 = 1,… , 𝑑 . (5)

Let 𝚿 be the 𝑚 × 𝑙 matrix whose columns are the POD basis vectors: 
𝚿 = [𝝍1, … , 𝝍 𝑙]. The 𝑚 × 1 column vector 𝒖(𝑖) is approximated by the 
𝑚 × 1 column vector

𝒖
(𝑖)
𝐺−𝑅𝑂𝑀

=𝚿𝜻 (𝑖), for 𝑖 = 1,… , 𝑛 , (6)

where 𝜻 (𝑖) is an unknown 𝑙 × 1 column vector that must be determined. 
Substituting 𝒖(𝑖)

𝐺−𝑅𝑂𝑀
into the linearized system of Eqs. (1) given by the 

final Newton-Raphson iteration of our FE solver yields the following 
linear system:

𝑲 (𝑖)𝚿𝜻 (𝑖) = 𝒇 (𝑖) for 𝑖 = 1,… , 𝑛 . (7)

Remark 2.1. We note that a classical G-ROM for our setting would be 
built by inserting the expansion (6) into the nonlinear equations, and 
then projecting the resulting system onto the ROM space spanned by 
{𝝍1, … , 𝝍 𝑙}. This would yield a nonlinear system of equations for the 
unknown column vector (also known as POD coefficients), 𝜻 (𝑖). In (7), 
however, we used a different approach. Specifically, instead of using 
the full nonlinear equations, we used the linearized FE system of equa-

tions in (1), which is the final iteration in the Newton-Raphson method 
used by Abaqus to solve the underlying nonlinear equations. We chose 
this linearized G-ROM since its implementation in commercial software 
packages such as Abaqus is extremely simple. Thus, practitioners with 
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limited experience in the field can use the linearized G-ROM with min-

imal effort.

We also note that this a posteriori application of POD-based ROM 
to the linearized equations resulting from FE discretization was 
demonstrated for modeling palpation of the human cornea with both 
anisotropic [14] and isotropic [15] hyperelasticity, as well as a model 
reduction of an extended FEM approach for limbal relaxing incisions 
on the cornea [34]. In addition, several techniques of model reduction 
have been applied to linearized FE equations for nonlinear material 
models of both academic test problems, such as cube compression and 
thick-walled cylinder compression, and practical biomechanical test 
problems, such as the inferior turbinate [20,21,35].

We then perform the Galerkin projection of Eqs. (7) onto the space 
spanned by the POD basis, {𝝍𝒊}𝑙𝑖=1 (i.e., we multiply both terms of 
Eqs. (7) to the left by 𝚿⊤) to obtain the linearized G-ROM:

𝚿⊤𝑲 (𝑖)𝚿𝜻 (𝑖) =𝚿⊤𝒇 (𝑖) for 𝑖 = 1,… , 𝑛 . (8)

The left side of Eqs. (8), 𝚿⊤𝑲 (𝑖)𝚿, is an 𝑙 × 𝑙 matrix, and the right side, 
𝚿⊤𝒇 (𝑖), is an 𝑙 × 1 column vector. The linear system in Eqs. (8) can be 
solved to find the 𝑙×1 column vector, 𝜻 (𝑖). Thus, the 𝑚-dimensional FOM 
system of equations (1) is reduced to the much lower 𝑙-dimensional G-

ROM system of equations (8) (𝑙 ≪ 𝑚), which is computationally cheaper 
to solve.

We evaluate the G-ROM performance by evaluating the following 
error, 𝐺−𝑅𝑂𝑀 , defined as

𝐺−𝑅𝑂𝑀 =

√√√√ 𝑛∑
𝑖=1


(𝑖)
𝐺−𝑅𝑂𝑀

, (9)

with


(𝑖)
𝐺−𝑅𝑂𝑀

=
‖‖‖𝒖(𝑖)𝐺−𝑅𝑂𝑀

− 𝒖(𝑖)
𝐹𝑂𝑀

‖‖‖2R𝑚‖‖‖𝒖(𝑖)𝐹𝑂𝑀

‖‖‖2R𝑚

, (10)

where ‖⋅‖R𝑚 =
√⟨⋅, ⋅⟩R𝑚 denotes the canonical norm in R𝑚 associated 

with the inner product ⟨⋅, ⋅⟩R𝑚 , and 𝒖(𝑖)
𝐺−𝑅𝑂𝑀

is the G-ROM approxi-

mation of the FOM displacement snapshot corresponding to the 𝑖-th 
parameter set and determined from Eqs. (6) using 𝜻 (𝑖) obtained by solv-

ing Eqs. (8).

To evaluate the computational cost of the G-ROM, we record the 
time necessary to run computations on a CPU for both training the G-

ROM and approximating the snapshots with the trained G-ROM. For 
consistency, all the computations are carried out on the same machine 
used to produce the FE simulations: a 24-core Intel® Xeon® Gold6248R 
CPU @ 3.00 GHz with 191 GB of usable RAM.

Remark 2.2. In our numerical investigation, we considered only the re-

constructive regime for the G-ROM. We note, however, that one could 
employ our linearized G-ROM approach in the predictive regime via 
POD interpolation [14,15,36]. This operates under the assumption that 
the unknown column vectors, 𝜻 (𝑖), are smooth functions of the load 
vectors 𝒇 (𝑖) within a given set of fiber orientations and given luminal 
pressure. Thus, for a given set of fiber orientations and luminal pres-

sure, one can fit the known POD coefficients and projections of the load 
vectors onto the POD basis, 𝚿⊤𝒇 (𝑖), using, for example, cubic spline in-

terpolation. The cubic spline polynomial can then be evaluated to solve 
for coefficients, 𝜻̃ , corresponding to unseen load vectors 𝒇̃ which are 
determined, for example, via linear interpolation to unseen values of 
the associated set of fiber orientation and luminal pressure.

2.3. Simplified machine learning (ML) model

This section outlines our implementation of ML models for approx-

imation of the snapshots 𝑼 . For this, let 𝒙(𝑖) be the vector of variable 
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Fig. 3. (a) A flowchart depicting the structure of a typical artificial neural network (NN) with an input layer corresponding to constitutive model parameters and 
luminal pressure, two hidden layers, and an output layer corresponding to an approximation of a FOM snapshot. (b) A diagram of Eq. (12) which describes how 
inputs in each layer are used to compute an output.
inputs that contains the values of the mean preferred fiber directions in 
the three anatomical regions of the vagina (𝜇1, 𝜇2, . . . , or 𝜇8) and the 
value of the luminal pressure (i.e., 𝑝1 = 2.5 kPa, . . . , or 𝑝30 = 75 kPa) 
corresponding to the snapshot 𝒖(𝑖)

𝐹𝑂𝑀
, where 𝑖 = 1, … , 𝑛. These vectors 

are defined as follows:

𝒙(1) = (𝜇1, 𝑝1)

𝒙(2) = (𝜇1, 𝑝2)

⋮

𝒙(240) = (𝜇8, 𝑝30) .

(11)

Since each set 𝜇1, … , 𝜇8 contains three mean preferred fiber orientation 
parameters (𝛽𝑑 , 𝛽𝑚, and 𝛽𝑝), 𝒙(𝑖) is a 4 × 1 column vector.

The artificial neural network (NN) that was used is schematically 
represented with two hidden layers in Fig. 3(a). Since the goal of this 
work is to compare the performance of simple G-ROM models with 
simple ML models, for simplicity we choose a dense (fully-connected) 
network, wherein the values from each node in a given layer affect each 
node in the next layer. To be more precise, at each node of the current 
layer of the network, the 𝑚 components 𝑞𝑗 of the vector 𝒒 of node values 
from the previous layer (e.g., the 4 components of the vector 𝒙(𝑖) for the 
first hidden layer) are combined with a set of coefficients, or weights 
𝑤𝑗 , that serve to either amplify or dampen the input components. These 
input-weight products are then summed and that sum, with some bias 
𝑏, is passed through the (typically nonlinear) activation function, 𝜎, as 
shown in Fig. 3(b). The output of each node is given by

𝜎

( 𝑚∑
𝑗=1

𝑤𝑗 𝑞𝑗 + 𝑏

)
. (12)

The outputs of each layer are then passed through the next layer of 
nodes until the output (last) layer is reached. The final layer of the 
NN yields the vector of model outputs, 𝒚(𝑖) ≈ 𝒖(𝑖)

𝐹𝑂𝑀
. For our case, the 

output is an 𝑚 × 1 column vector that represents the ML approximation 
of a snapshot, 𝒖(𝑖)

𝑀𝐿
, corresponding to the set of input parameters 𝒙(𝑖).

To compare our ML model to the G-ROM, the performance of nu-

merous sizes of NN architectures were assessed in terms of relative 
error between ML approximations and the FOM solution as well as on-

line CPU time taken to generate ML approximations. Two architecture 
parameters, often called “hyperparameters” to differentiate from the 
weight and bias parameters that make up the NN, were varied. The 
first NN architecture parameter was the so-called hidden layer size, 
𝐿𝑆, which represents the number of nodes per hidden layer. A set of 
𝐿𝑆 values starting from 8 and increasing by multiples of 4 up to 2048 
was used, yielding a total of five values: 𝐿𝑆 = 8, 32, 128, 512, 2048. The 
second hyperparameter, the “depth” of the NN, 𝑁𝐷, which represents 
the total number of hidden layers was fixed at 𝑁𝐷 = 2 during the 𝐿𝑆

sweep. The results of the 𝐿𝑆 sweep indicated diminishing returns in 
relative error performance for architectures with 𝐿𝑆 > 128. Thus, a sec-

ond sweep was performed for a set of alternative depths of 𝑁𝐷 = 3, 4, 5, 
with 𝐿𝑆 fixed at 128.
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The epochs represent the number of times that the model inputs are 
fed forward through the NN model and back propagated, adjusting the 
weights and biases via the adaptive moment estimation optimizer [37]

to minimize a loss function. For all of the models, the loss function, 𝐽 , 
was selected to be the mean squared error, that is

𝐽 (𝒘,𝒃) = 1
𝑛train

𝑛train∑
𝑖=1

‖‖‖𝒖(𝑖)𝐹𝑂𝑀
− 𝒚(𝑖)(𝒘,𝒃)‖‖‖2R𝑚

(13)

where 𝒘 and 𝒃 are vectors of the weights and biases, respectively, for all 
nodes at each layer of the network, and 𝑛train is the number of snapshots 
used for training. Since the data size was relatively small, we used the 
full training dataset at each iteration, so that the number of epochs was 
equal to the number of optimization steps.

To determine the appropriate number of epochs for training, tests 
were performed using callbacks to stop training when convergence was 
observed in the loss of each ML model. Convergence was considered 
achieved when the minimum recorded loss value had not decreased 
for more than 25 epochs. We found that when this criterion was met, 
diminishing returns on loss improvement with additional epochs were 
consistently observable in fewer than 1024 epochs even for our largest 
NN with the most trainable parameters (𝐿𝑆 = 2048, 𝑁𝐷 = 2). Thus, 
all models across both hyperparameter sweeps were trained for 1024 
epochs.

All models were implemented in TensorFlow [38] with 10-fold cross 
validation; wherein the data are sliced into 10 different “folds” and 
10 separate models are trained, each with a different fold extracted 
from the training data to serve as a validation dataset (so here 𝑛train =
0.9 × 240 = 216). Cross-validation is a common technique for ensuring 
that ML models are not overfit.

As with the G-ROM, we evaluate ML performance for each trained 
fold model by defining the following error, 𝑀𝐿 :

𝑀𝐿 =

√√√√ 𝑛∑
𝑖=1


(𝑖)
𝑀𝐿

(14)

with


(𝑖)
𝑀𝐿

=
‖‖‖𝒖(𝑖)𝑀𝐿

− 𝒖(𝑖)
𝐹𝑂𝑀

‖‖‖2R𝑚‖‖‖𝒖(𝑖)𝐹𝑂𝑀

‖‖‖2R𝑚

. (15)

2.4. Simplified proper orthogonal decomposition machine learning 
(POD-ML) model

Our ML model maps a very low-dimensional input parameter space 
to a very high-dimensional output space, presenting a challenging struc-

ture for surrogate modeling, especially given our small training dataset. 
This difficulty can potentially be mitigated by choosing an alternative 
mapping that reduces the size of the output space of our ML models. 
To that end, we combined aspects of our two techniques to create a 
mapping from our parameter set (i.e., the set of mean preferred fiber 
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directions and luminal pressure) to the POD coefficients 𝜻 (𝑖) of corre-

sponding snapshots via methods similar to those used by Hesthaven et 
al. [28]. Our existing NN architecture was altered such that the final 
layer yields an 𝑙-dimensional vector of POD coefficients, 𝒚(𝑖) ≈ 𝜻 (𝑖)

𝐹𝑂𝑀
, 

where 𝜻 (𝑖)
𝐹𝑂𝑀

represents the ideal POD coefficients (i.e., the FOM data 
projected onto the POD basis) rather than the POD coefficients obtained 
by running the G-ROM. Consequently, the loss function which was min-

imized to train our POD-ML models took the form:

𝐽 (𝒘,𝒃) = 1
𝑛train

𝑛train∑
𝑖=1

‖‖‖𝜻 (𝑖)𝐹𝑂𝑀
− 𝒚(𝑖)(𝒘,𝒃)‖‖‖2R𝑚

. (16)

To determine our training data, 𝜻 (𝑖)
𝐹𝑂𝑀

, for POD-ML, we performed 
a singular value decomposition (SVD) on the FOM displacement field 
data (i.e., the 𝑚 × 𝑛 matrix 𝑼 with 𝑚 > 𝑛) yielding

𝑼 =𝚿𝚺𝑽 ⊤ , (17)

where 𝚺 is the 𝑛 × 𝑛 diagonal matrix containing the singular values of 
𝑼 and 𝑽 ⊤ is the 𝑛 × 𝑛 matrix containing the right singular vectors of 
𝑼 . We note that a simple matrix calculation [11] shows that the 𝑚 × 𝑛

matrix of left singular vectors of 𝑼 in (17) contains the matrix of POD 
basis functions of 𝑼 found in (5). Thus, for consistency, we denote the 
matrix of left singular vectors of 𝑼 with 𝚿.

Next, we note that, for any POD basis of size 𝑙 with 𝑙 ≤ 𝑛, the training 
data (i.e., the ideal POD coefficients), 𝜻 (𝑖)

𝐹𝑂𝑀
, are defined as the projec-

tion of the FOM data, 𝒖(𝑖)
𝐹𝑂𝑀

, onto the POD basis:

𝜻
(𝑖)
𝐹𝑂𝑀

=𝚿⊤
𝑙
𝒖
(𝑖)
𝐹𝑂𝑀

, 𝑖 = 1,… , 𝑛 , (18)

where 𝚿𝑙 is the 𝑙 × 𝑚 matrix containing the first 𝑙 columns of 𝚿. Fi-

nally, since the columns of 𝚿 are orthonormal, the SVD (17) yields the 
following formula for the training data:

𝜻
(𝑖)
𝐹𝑂𝑀

= 𝚺𝑙𝒗
(𝑖)⊤ 𝑖 = 1,… , 𝑛 , (19)

where 𝚺𝑙 is the 𝑙 × 𝑙 matrix of 𝚺 containing the first 𝑙 singular values of 
𝑼 , and 𝒗(𝑖)⊤ are the 𝑙 × 1 right singular vectors of 𝑼 contained in 𝑽 ⊤.

The NN architecture for POD-ML had a network depth of 𝑁𝐷 = 2
with 𝐿𝑆 = 128 nodes per hidden layer. The dimension of the output 
layer varied across trials from 𝑙 = 1, … , 100 corresponding to the size of 
the POD basis and associated POD coefficients for which the NN was 
trained. Thus, an aptly modified version of Fig. 3(a) would show nodes 
for 𝑦(𝑖)1 , … , 𝑦(𝑖)

𝑙
. All other aspects of the NN training process remained the 

same for the POD-ML as for the ML, such as use of a sigmoid activation 
function, 1024 training epochs, use of the adaptive moment estimation 
optimizer, and 10-fold cross-validation.

The relative error of our prediction with respect to the FOM was 
determined by using values of the POD coefficients predicted by our 
NN, 𝒚(𝑖) = 𝜻 (𝑖)

𝑀𝐿
, in conjunction with the known POD basis, 𝚿, to produce 

approximations of the FOM displacement field. Thus, the performance 
for each trained cross-validation fold model, 𝑃𝑂𝐷−𝑀𝐿, was defined as 
follows:

𝑃𝑂𝐷−𝑀𝐿 =

√√√√ 𝑛∑
𝑖=1


(𝑖)
𝑃𝑂𝐷−𝑀𝐿

(20)

with


(𝑖)
𝑃𝑂𝐷−𝑀𝐿

=
‖‖‖𝚿𝜻 (𝑖)𝑀𝐿

− 𝒖(𝑖)
𝐹𝑂𝑀

‖‖‖2R𝑚‖‖‖𝒖(𝑖)𝐹𝑂𝑀

‖‖‖2R𝑚

. (21)

To ensure fairness of comparison between methods, all computa-

tions for training and approximation with the various ML models are 
carried out on the same machine used for both the FE simulations and 
the G-ROM: a 24-core Intel® Xeon® Gold6248R CPU @ 3.00 GHz with 
191 GB of usable RAM. As with the G-ROM, we evaluate the compu-

tational cost of the ML models by recording both the time required to 
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run computations for training and the time required to approximate the 
FOM snapshots with a trained model.

3. Results

In this section, we present the results for our numerical investiga-

tion. Specifically, we present the FOM results (Section 3.1), which are 
then used as snapshot data in the G-ROM and ML numerical comparison 
(Section 3.2).

3.1. FOM

Increase in luminal pressure. The FE simulations of the torn vagina 
capture a variety of deformations in response to the applied luminal 
pressure. These deformations changed with increasing luminal pressure, 
from 𝑝1 = 2.5 kPa to 𝑝30 = 75 kPa, and differences in mean preferred 
fiber directions, as defined by 𝛽𝑝, 𝛽𝑚, and 𝛽𝑑 in the proximal, mid, and 
distal vagina, respectively. The magnitude of the displacement field 
increased with increasing luminal pressure for every combination of 
fiber orientations considered, away from the fixed end of the vagina 
(Fig. 4). The mid region deformed significantly more since most of the 
tear spanned this region. As pressure increased, the tear predominantly 
widened in the hoop direction taking a more circular and less elliptical 
shape.

Variations in fiber organization. Localized variations in the magnitude 
of the displacement field of FOM solutions obtained with different com-

binations of fiber orientations at the same luminal pressure were also 
observed (Fig. 5). Changes in mean preferred fiber orientation from 
𝛽𝑑 = 25𝑜 to 𝛽𝑑 = 35𝑜 in the distal region, from 𝛽𝑚 = 25𝑜 to 𝛽𝑚 = 35𝑜 in the 
mid region, and from 𝛽𝑝 = 55𝑜 to 𝛽𝑝 = 65𝑜 effectively made the mechan-

ical response of these regions more compliant in the hoop direction, 
resulting in a deformed vagina with a more prolate-like shape.

The model depicted in Fig. 5(b) differed from the model of Fig. 5(a) 
only due to the mean preferred fiber direction of 𝛽𝑚 = 25𝑜. This decrease 
in 𝛽𝑚 resulted in a narrower shape of the deformed organ through the 
mid region. The magnitude of the displacement field in the mid region 
did not change but it was greater in the distal region owing to increased 
axial displacement as one can appreciate when comparing Fig. 5(a) and 
Fig. 5(b). Interestingly, when the mean preferred fiber direction was 
closer to the hoop direction in the mid region of the model, effectively 
making the vaginal tissue stiffer in the hoop direction through that re-

gion, a wider opening of the tear was observed (Fig. 5(a)-(b)).

Both the distal and proximal mean preferred fiber orientations of 
the model in Fig. 5(c) differed from those of Fig. 5(a) with 𝛽𝑑 = 25𝑜 and 
𝛽𝑝 = 65𝑜. These differences resulted in a relative decrease in the magni-

tude of the displacement field in the distal region and a relative increase 
in the magnitude of the displacement field in the proximal region for 
the model of Fig. 5(c) compared to the model in Fig. 5(a) at the same 
luminal pressure. Consequently, the model in Fig. 5(c) is more prolate-

like on the distal end and comparatively spherical on the proximal end. 
The tear behaved similarly between the models depicted in 5(c) and 
5(a). Lastly, Fig. 5(d) depicts a FOM solution with mean preferred fiber 
directions that are entirely different from the solution in Fig. 5(a), with 
𝛽𝑑 = 𝛽𝑚 = 25𝑜 and 𝛽𝑝 = 65𝑜. The model in Fig. 5(d) had relatively less 
deformation in the hoop direction in the mid and distal regions com-

pared to the model in Fig. 5(a). However, the displacement field of the 
distal region for the model in Fig. 5(d) had a greater magnitude com-

pared to the model in Fig. 5(a), owing to greater axial displacement. 
The proximal region of the model in Fig. 5(d) showed greater deforma-

tion in the hoop direction resulting in a more spherical shape than the 
proximal region of the model in Fig. 5(a). The increased stiffness in the 
hoop direction due to a decrease in 𝛽𝑚 in the mid region of the model 
in Fig. 5(d) appeared to create a wider opening of the tear compared to 
the model in Fig. 5(a).
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Fig. 4. Nodal displacement magnitude of the FE model of torn vagina for (a) undeformed mesh and (b)-(f) deformed meshes for various values of the applied luminal 
pressure 𝑝𝑖, with 𝛽𝑑 = 𝛽𝑚 = 35𝑜 and 𝛽𝑝 = 55𝑜 . The upper, middle, and lower thirds of each FE model correspond to the distal, mid, and proximal regions of the vagina, 
respectively. Note that ‖⋅‖ denotes the Euclidean norm in R3 .

Fig. 5. (a)-(b)-(c)-(d) Nodal displacement magnitude of the FE model of torn vagina for various values of the mean preferred fiber directions, 𝛽𝑑 , 𝛽𝑚 , and 𝛽𝑝 , at an 
applied luminal pressure 𝑝22 = 55 kPa. The upper, middle, and lower thirds of each FE model correspond to the distal, mid, and proximal anatomical regions of the 
vagina, respectively. Note that ‖⋅‖ denotes the Euclidean norm in R3 .
174
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Fig. 6. (a) Cumulative energy of the eigenvalues 𝜆1, … , 𝜆100 corresponding to 
the POD basis functions 𝝍1, … , 𝝍100 , respectively. The gray shading marks the 
basis functions that lead to an RIC index of 0.9999. (b) Decay of the eigenvalues 
𝜆1, … , 𝜆100 corresponding to the POD basis functions 𝝍1, … , 𝝍100 , respectively.

3.2. Simplified G-ROM and ML

G-ROM basis construction. There is no universally accepted method to 
select the number 𝑙 of POD basis functions for the G-ROM, but the cumu-

lative energy of the eigenvalues,  =
(∑𝑙

𝑖=1 𝜆𝑖

)
∕
(∑𝑑

𝑖=1 𝜆𝑖

)
, which is also 

known as the relative information content (RIC) index [39], is often 
used. The cumulative energy of the eigenvalues exceeded a tolerance of 
0.9999 at 𝑙 = 42, as shown in Fig. 6(a). The decay of the eigenvalues 
𝜆1, … , 𝜆100 corresponding to the POD basis functions 𝝍1, … , 𝝍100 from 
Eqs. (5) did not show the clear plateau that is typically associated with 
exhaustion of all viable basis functions (Fig. 6(b)). Thus, we concluded 
that the quality of the G-ROM was dependent on lower energy POD 
basis functions. This can be seen in Fig. 6(b), where the eigenvalues 
consistently decayed from values of 𝑂(103) to 𝑂(10−3) for 𝑙 = 1, … , 100.

Accuracy. The relative error 𝐺−𝑅𝑂𝑀 of the G-ROM approximations 
with respect to the FOM solutions averaged over all degrees of free-

dom and all snapshots, shown in Fig. 7, ranged from 𝑂(100) to 𝑂(10−5). 
The error exhibited a typical pattern for G-ROMs, improving rapidly 
at first and then showing diminishing returns with increasing com-

putational cost as the size of the POD basis increased from 𝑙 = 1 to 
𝑙 = 100. Shown for comparison, are the relative errors 𝑀𝐿 of the ML ap-

proximations generated using various NN architectures with increasing 
computational cost, averaged across the 10-fold cross validation models 
(Fig. 7(a)). For model architectures where 𝑁𝐷 = 2, the error decreased 
by an order of magnitude from 𝑂(1) to 𝑂(10−1) when increasing from 
𝐿𝑆 = 8 to 𝐿𝑆 = 128. However, further increases in 𝐿𝑆 up to 𝐿𝑆 = 2048
yielded no further error improvements, and even slightly degraded the 
error performance compared to 𝐿𝑆 = 128. These diminishing returns on 
error for 𝐿𝑆 > 128 with dramatic increases in online computational cost 
led us to use 𝐿𝑆 = 128 for our investigation of varying 𝑁𝐷. Increasing 
to 𝑁𝐷 = 3, 𝑁𝐷 = 4, and 𝑁𝐷 = 5 did not yield substantial improvements 
in error performance over 𝐿𝑆 = 128 and 𝑁𝐷 = 2, with small increases in 
online computational cost. Also shown are the relative errors, 𝑃𝑂𝐷−𝑀𝐿, 
of the POD-ML models approximating POD coefficients for POD bases 
of size 𝑙 = 1, … , 100. The relative error of the POD-ML approximations 
decreased with increasing 𝑙, but the errors still remained in the same 
range of magnitudes as did the errors of the ML, 𝑂(1) to 𝑂(10−1). Error 
improvements for the POD-ML diminished around 𝑙 = 12. The primary 
advantage of the POD-ML was its generally lower computational cost.
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Fig. 7. (a) Pareto plot: Relative errors (Eqs. (9), (14), and (20)) versus the online 
(CPU) time for G-ROM with POD bases of size 𝑙 ranging from 𝑙 = 1 to 𝑙 = 100, 
ML models with various combinations of hyperparameters 𝐿𝑆 and 𝑁𝐷, and the 
POD-ML models for POD coefficients with 𝑙 ranging from 𝑙 = 1 to 𝑙 = 100. The 
gray shading marks the lower bound of the relative error for the ML models. (b) 
Relative error of the G-ROM versus the number 𝑙 of the POD basis functions. 
The gray shading marks the number (𝑙 = 11) of the POD basis functions with a 
relative error that is comparable to the ML model with 𝐿𝑆 = 128 and 𝑁𝐷 = 2.

Comparison between G-ROM and ML. The average error of the ML fold 
models with hyperparameters 𝐿𝑆 = 128 and 𝑁𝐷 = 2 was found to be 
numerically comparable to the error of the G-ROM with a POD basis 
of size 𝑙 = 11 (Fig. 7). For this reason, these two models, as well as the 
POD-ML model corresponding to 𝑙 = 11, were chosen for a more gran-

ular comparison of G-ROM and ML error performance at the levels of 
individual snapshots and mesh nodes. Fig. 8 shows the analysis of the 
accuracy with which the G-ROM with 𝑙 = 11, the ML with 𝐿𝑆 = 128 and 
𝑁𝐷 = 2, and the POD-ML with 𝑙 = 11 approximated individual snap-

shots at each luminal pressure and for each parameter set describing 
the fiber organization. The results indicated that all three methods had 
fairly consistent performance across both pressure values and mean 
preferred fiber orientations, for snapshots corresponding to pressures 
ranging from 10 kPa to 75 kPa. However, pressures of 7.5 kPa and be-

low had worse error performance and greater error variation between 
fiber orientation combinations at the same pressure for all methods, 
with the POD-ML with 𝑙 = 11 basis functions showing the worst per-

formance. Errors were highest for the snapshots at the lowest pressure 
value of 2.5 kPa with G-ROM relative error reaching 0.049 for 𝜇2, ML 
error reaching 0.031 for 𝜇8, and POD-ML error reaching 0.129 for 𝜇8. 
We note that the G-ROM error performance was generally worse than 
the ML error performance for pressures lower or equal to 7.5 kPa, but 
the POD-ML performed worse than either. We also note that, for pres-

sures greater or equal to 10 kPa, the G-ROM generally performs better 
in terms of error than the ML or POD-ML, with the lowest values of 
error at 0.001 for the G-ROM, 0.004 for ML, and 0.003 for POD-ML.

Lastly, we calculated nodal errors of the G-ROM and ML approx-

imations relative to the FOM solutions at one low pressure snapshot 
(𝑝1 = 2.5 kPa) and one high pressure snapshot (𝑝22 = 55 kPa) for 𝜇1, and 
mapped them over the surface of the deformed mesh to compare local-

ized error performance between our techniques (Fig. 9). At the lower 
pressure, the G-ROM showed largest errors on the sides of the tear and 
in the distal region, especially close to the opening (Fig. 9(a)). Smaller 
errors for the same case were displayed in the proximal region close to 
the opening and in a band around the mid region, away from the tear. 
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Fig. 8. Relative errors (Eqs. (10), (15), and (21)) of approximations produced 
for each fiber orientation parameter set (differentiated by color) at each luminal 
pressure 𝑝1, … , 𝑝30 by (a) the G-ROM using a POD basis of size 𝑙 = 11, (b) the 
ML model with hyperparameters 𝐿𝑆=128 and 𝑁𝐷=2, and (c) the POD-ML 
model with 𝑙 = 11, 𝐿𝑆=128 and 𝑁𝐷=2. The gray shading marks snapshots 
with lowest relative errors.

The ML approximation at lower pressure also had larger errors in the 
immediate region of the tear, but the error over most of the rest of the 
geometry was fairly uniform with patches of slightly larger and slightly 
smaller errors distributed randomly throughout (Fig. 9(b)). The excep-

tion was a thin band of smaller errors around the proximal opening 
which can be seen clearly on the interior of the geometry when viewing 
through the tear. While the POD-ML approximation had greater over-

all magnitudes of error, the patterns of error on the mesh reflected that 
of the G-ROM with the notable exception of the boundary region at the 
distal opening (Fig. 9(c)). Whereas the G-ROM had greater error on this 
boundary than elsewhere in the distal region, the POD-ML had smaller 
errors at the boundary than elsewhere. In the higher pressure case, the 
G-ROM once again exhibited slightly larger errors around the edges 
of the tear, though less pronounced than in the lower pressure case 
(Fig. 9(d)). The proximal region again had smaller errors than other re-

gions, but the band around the mid region had slightly larger errors in 
this case. Overall, the magnitude of the error in the higher pressure G-

ROM case was much smaller than in the lower pressure case. The higher 
pressure ML approximation also had a less pronounced increase in error 
around the edges of the tear when compared to its low pressure coun-

terpart (Fig. 9(e)). Its other characteristics were very similar though, 
with randomly distributed patches of larger and smaller errors and a 
band of smaller errors around the proximal opening. As with the lower 
pressure case, the POD-ML approximation of the higher pressure snap-

shot had greater error magnitudes but similar patterning of error to the 
G-ROM in the mid region and the distal region away from the boundary 
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(Fig. 9(f)). Different from the G-ROM, the POD-ML again had smaller 
errors at the distal opening than elsewhere in the proximal region. In ad-

dition, the POD-ML exhibited errors in the proximal region away from 
the boundary which were similar to the errors of the mid region rather 
than smaller, as was the case for the G-ROM. The overall magnitude of 
errors for the G-ROM and POD-ML approximations changed quite sub-

stantially between lower and higher pressure cases, while the ML had 
similar overall error magnitudes in each of the pressure cases.

Computational cost. All values for computational cost assessment were 
produced by running the offline and online portions of the G-ROM and 
NN on the same 24-core Intel® Xeon® Gold 6248R CPU @ 3.00 GHz 
with 191 GB of usable RAM that was used to produce FOM results. 
No GPU hardware acceleration was implemented when generating our 
results (see discussion in Section 4).

The offline (training) and online (approximation) times are listed 
in Table 2 alongside corresponding relative errors (Eqs. (9), (14), (20)) 
for the least expensive G-ROM (𝑙 = 1), the G-ROM used for snapshot 
and local error comparisons with the ML model (𝑙 = 11), the most ex-

pensive G-ROM (𝑙 = 100), the least expensive ML architecture (𝐿𝑆 = 8, 
𝑁𝐷 = 2), the ML architecture used for snapshot and nodal error com-

parisons with the G-ROM (𝐿𝑆 = 128, 𝑁𝐷 = 2), the most expensive ML 
architecture (𝐿𝑆 = 2048, 𝑁𝐷 = 2), and the POD-ML (𝑙 = 11, 𝐿𝑆 = 128, 
𝑁𝐷 = 2). The least expensive G-ROM had an offline time of 𝑂(10−1)
s, and the G-ROM at comparable error performance to the ML, with 
hyperparameters 𝐿𝑆 = 128 and 𝑁𝐷=2, had an offline time of 𝑂(1)
s. Training the most expensive G-ROM, with 𝑙 = 100 basis functions, 
only took 𝑂(101) s. The mean offline times for all the ML models from 
least to most expensive were of 𝑂(102) s, an order of magnitude larger 
than the offline time of the most expensive G-ROM. As for online times, 
the G-ROM with one basis function was, predictably, the least expen-

sive to evaluate, taking 𝑂(10−3) s to complete. The G-ROM with a POD 
basis of size 11 was not much more expensive, with an online time 
also of 𝑂(10−3) s. By contrast, the G-ROM with a 100-dimensional POD 
basis had an online time of 𝑂(10−1) s. The online times of the ML mod-

els with 𝐿𝑆 = 8 and 𝐿𝑆 = 128 were quite similar, both taking 𝑂(10−2)
s to produce approximations. The online time of the ML model with 
𝐿𝑆 = 2048 was more similar to the G-ROM for 𝑙 = 100, with an online 
time of 𝑂(10−1) s. Lastly, the POD-ML model with 𝑙 = 1, … , 100 gener-

ally outperformed the ML model in all cases, with the most expensive 
approximations (𝑙 = 100) having online times of 𝑂(10−2) s and complet-

ing faster than the smallest ML model (𝐿𝑆 = 8, 𝑁𝐷 = 2). Many of the 
POD-ML approximations (𝑙 = 2, … , 65) had online times of 𝑂(10−3) s and 
performed either comparably or superior to their G-ROM counterparts.

We note that substantially more floating point operations (FLOPS) 
were required for an evaluation of the ML model mapping from param-

eter sets to full displacement fields than were required for the G-ROM. 
We speculate that the similarity in evaluation times was due to paral-

lelization and optimization built into the established ML libraries we 
used in our study.

4. Discussion

In this study, we constructed an FE model of the rat vagina with 
geometry and boundary conditions meant to recreate the ex vivo ex-

periments conducted in our lab [40]. The model accounts for observed 
differences in the microstructure of the proximal, mid, and distal vagina 
[30]. A pre-imposed elliptical tear with the major axis aligned with the 
axial direction of the organ was included in the geometry so the model 
could give us insight into the impact that a large tear had on the defor-

mation of vaginal tissue. The results of our simulations showed that the 
initially elliptical tear became more circular as the pressure increased 
(Fig. 4) and that the opening of the tear was favored when the mean pre-

ferred fiber directions were more aligned in the hoop direction (Fig. 1). 
Both these findings are consistent with our experimental investigation 
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Fig. 9. Nodal relative error plotted on the surface of deformed mesh for approximations of snapshots via G-ROM with a POD basis with 𝑙 = 11 at 𝑝1 = 2.5 kPa (a) and 
𝑝22 = 55 kPa (d), via ML with hyperparameters 𝐿𝑆=128 and 𝑁𝐷=2 for snapshots at 𝑝1 = 2.5 kPa (b) and 𝑝22 = 55 kPa (e), and via POD-ML for snapshots at 𝑝1 = 2.5
kPa (c) and 𝑝22 = 55 kPa (f), all with mean preferred fiber orientations, 𝜇1 (𝛽𝑑 = 𝛽𝑚 = 35° and 𝛽𝑝 = 55°).
Table 2

Offline times, online times, and relative errors for the FOM, the G-

ROM with a POD basis with 𝑙 = 1, 𝑙 = 11, and 𝑙 = 100, ML models 
with architectures defined by hyperparameters 𝐿𝑆 = 8, 128, and 
2048 with 𝑁𝐷 = 2, and the POD-ML model with 𝑙 = 11 POD basis 
functions. The FOM offline time is the full cost of simulation and 
the FOM online time is the order of the cost of the final Newton-

Raphson iterations for the 240 parameter combinations.

Model Reduction Offline Online Relative

Technique Time (s) Time (s) Error

FEM 3.827 × 104 𝑂(10) N/A

G-ROM: 𝑙 = 1 0.479 0.005 5.095

G-ROM: 𝑙 = 11 1.641 0.009 1.189 × 10−1

G-ROM: 𝑙 = 100 13.650 0.112 9.364 × 10−5

ML: 𝐿𝑆 = 8, 𝑁𝐷 = 2 104.947 0.015 1.069

ML: 𝐿𝑆 = 128, 𝑁𝐷 = 2 108.181 0.017 1.461 × 10−1

ML: 𝐿𝑆 = 2048, 𝑁𝐷 = 2 476.234 0.127 2.785 × 10−1

POD-ML: 𝑙 = 11 14.919 0.009 3.193 × 10−1

exploring the toughening mechanisms of the vagina in the rat model 
[30].

Although both the selected geometry (i.e., the hollow prolate 
spheroid) and boundary conditions (e.g., uniform luminal pressure) 
of the FE model well replicate the experimental conditions of the ex 
vivo vagina, they are not a realistic representation of the shape and 
boundary conditions of the in vivo vagina. To create an FE model that 
accurately represents in vivo conditions, we are currently using mag-

netic resonance imaging (MRI) to obtain detailed images of the vagina 
within the entire reproductive system in rodents. These new data will 
be incorporated into FE models to reconstruct the geometry and repro-

duce both boundary and loading conditions of the reproductive system. 
Vaginal tears were assumed to be static elliptical holes in the geometry 
of our FE simulations, as done by others to study the mechanical impact 
of episiotomy [7]. This assumption was supported by our experimental 
work showing that the vagina is a very tough organ with a microstruc-
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ture that prevents tear propagation. Experimentally, pre-imposed tears 
along the axial direction of the rat vagina were observed to propagate 
under inflation at a mean (±std. dev.) pressure of 40 ± 10 kPa [30]. To 
improve the realism of the FE simulations, we plan to create FE models 
that can not only simulate the deformations of the torn vagina but also 
the progressive propagation of tears. One method which could allow us 
to simulate tear propagation in the vagina is the cohesive zone model 
for fracture mechanics [41]. The implementation of such model would 
still require that we pre-imposed the site of the tear and the direc-

tion of tear propagation. To simulate tearing behavior which is entirely 
controlled by the mechanics of our model, we instead would need to 
implement damage modeling into our material constitutive equations 
and delete elements from the mesh when they meet some set failure 
criteria [42,43].

With regard to our simplified model reduction techniques, our re-

sults appear to indicate that the G-ROM outperformed the ML in all our 
metrics of comparison, with the exception of the POD-ML having com-

parable speed to smaller-dimensional G-ROMs. The Pareto plots shown 
in Fig. 7(a) and both the offline and online times for the G-ROM and ML 
methods listed in Table 2 seem to favor the G-ROM as having superior 
performance. The most expensive G-ROM considered, with 𝑙 = 100 POD 
basis functions, had an offline time which was an order of magnitude 
smaller than the least expensive ML model and an error that was 4 or-

ders of magnitude smaller than any of the ML models. While online time 
for this G-ROM was one order of magnitude slower than most of the ML 
models and two orders of magnitude slower than most of the POD-ML 
models, it was comparable to the online time of the most expensive ML 
model. The lowest error approximation from the ML models (𝐿𝑆=128, 
𝑁𝐷=5) was outperformed by the G-ROM with 𝑙 = 11 POD basis func-

tions. We do, however, note that the ML approximations had slightly 
more competitive error performance for the lower pressure snapshots 
from 2.5-7.5 kPa as the G-ROM only achieved superior performance in 
this range with 𝑙 ≥ 14 POD basis functions.

We speculate that the superior performance of the G-ROM in this 
case may be due to it being inherently physics-informed as it is con-

structed from the linearized equations of the nonlinear elasticity prob-

lem, whereas the ML must relate model inputs and outputs without 



W. Snyder, A.S. Anaya, J. Krometis et al. Computers and Mathematics with Applications 152 (2023) 168–180
knowledge of the physics. However, this does not mean that the G-

ROM is the preferred method of order reduction for all use-cases. The 
linearized G-ROM presented in this study could perform better than 
ML only in the context where the governing equations of the prob-

lem are known and the goal is to reconstruct the existing snapshots 
on which the models are trained. Having an ML technique which is not 
dependent on known governing equations can be an advantage as it is 
more easily adaptable to performing approximations with, for example, 
experimental data sets. The ML model could perform these approxi-

mations without the need to first replicate the experimental results in 
FE models as would be necessary for G-ROM. In addition, the G-ROM 
used in this study is constructed from the linear systems produced by 
the final iterations of the Newton-Raphson method applied to the non-

linear system of equations of our nonlinear elasticity problem. Thus, 
the G-ROM we used here has difficulties being extended to the predic-

tive regime as components of the linearized system at new parameters 
can only be obtained via running additional FE simulations, decreas-

ing the improved efficiency of G-ROM. Therefore, prediction of new 
snapshots with our G-ROM for parameters not included in the training 
data would require methods such as the subspace interpolation used 
by Niroomandi et al. [15] and Pfaller et al. [19] or precomputation 
of G-ROM bases for a set of “most probable” load states, also used by 
Niroomandi et al. [15]. Alternatively, the difficulties in the predictive 
regime could be addressed by constructing a fully nonlinear G-ROM. 
However, that would certainly increase the overall computational cost 
of the G-ROM. By contrast, the ML model does not require additional 
steps to perform such extrapolative predictions. However, an ML model 
which is not physics-informed may have worse performance when mak-

ing predictions outside of the training regime than would a comparable 
physics-informed approach. Therefore, the type of ML model used in 
this study may not be as reliable as a nonlinear G-ROM for making 
predictions, but it does have an advantage in comparative ease of im-

plementation. We also note that the ML has a general advantage in 
terms of usability due to open source tool-kits like scikit-learn and Ten-

sorFlow.

The superior speed performance of the G-ROM compared to the ML 
could be due to the implementation of both techniques on a CPU rather 
than a graphics processing unit (GPU). Typically, ML models are imple-

mented using hardware acceleration to leverage the GPU and reduce 
computational cost. From cursory testing with hardware acceleration 
we found that our ML models with 𝐿𝑆 up to 1000 had online times 
of 𝑂(10−3) s. Our choice not to conduct all of TensorFlow’s calculations 
on the CPU instead of GPU had two motivations. First, we do not yet 
have a TensorFlow implementation of our G-ROM methods which can 
benefit from hardware acceleration, so our ML results needed to be run 
on a CPU for the sake of a fair comparison. Second, we found that 
our GPU (NVIDIA® Quadro RTX™ 5000) would exhaust its available 
memory when computing NN models with 𝐿𝑆 = 2048. Our results in-

dicated that 𝐿𝑆 > 128 yielded diminished returns in performance, so 
we acknowledge that such large hidden layers may not be necessary for 
problems of our type. As this project advances, we will narrow our fo-

cus to optimize NNs with smaller 𝐿𝑆 for which hardware acceleration 
is viable.

Both model order reduction techniques, the G-ROM and ML meth-

ods, struggled to approximate FE simulations at lower luminal pres-

sure. In Fig. 8, we compared approximations of individual snapshots 
at pressure values 𝑝1, … , 𝑝30 using the G-ROM with 𝑙 = 11 POD basis 
functions, POD-ML of the same dimension, and the ML model with 
𝐿𝑆=128 and 𝑁𝐷=2. All approximations exhibited worse error per-

formance for snapshots at pressures from 2.5-7.5 kPa, but the G-ROM 
and POD-ML at 𝑙 = 11 had worse error performance than the ML and 
more variation in error between fiber orientation combinations. This 
difficulty in approximating the FOM at lower pressures may be the 
result of the highly nonlinear anisotropic elastic behavior of vaginal 
tissue. According to the HGO constitutive model implemented in this 
study, the deformations of the vaginal tissue are determined by both 
178
the arrangement of the fibers comprising the tissue and the surrounding 
isotropic ground substance. Such deformations increase exponentially 
with the applied pressure, changing significantly from low pressures to 
high pressures based on the contributions of the fibers and ground sub-

stance.

When comparing G-ROM and ML approximations at comparable lev-

els of overall relative error, we also found that the profiles of localized 
errors for the two methods were quite different (Fig. 9). Figs. 9(a), 9(b), 
and 9(c) all showed larger values of error around the edges of the tear 
as expected given that the tear region experiences larger deformations 
and greater stress concentrations than other parts of the model. How-

ever, Figs. 9(a) and 9(c) had generally larger magnitudes of error over 
most of the geometry compared to Fig. 9(b). This agrees with the results 
for errors at different values of pressure shown in Fig. 8, wherein the 
G-ROM and POD-ML approximations tended to perform worse at lower 
pressures than the ML approximations. Notably, the G-ROM and POD-

ML approximations in Fig. 9(a) and 9(c) also had clear patterns of local 
error in regions away from the tear. One could observe smaller errors 
at the proximal opening, slightly larger errors in the region of transi-

tion from the proximal to mid region, a band of smaller errors again in 
the mid region, and then larger errors throughout the distal region up 
to the distal opening. For the POD-ML, the error dropped again at the 
boundary on the distal opening. Comparatively, the ML approximation 
errors in Fig. 9(b) did not have the same sort of regional distinctions 
away from the tear. There were small patches of larger or smaller local 
error dispersed over the geometry and only a thin band of smaller errors 
around the proximal opening. A similar disparity was observed between 
Fig. 9(e) and Figs. 9(d) and 9(f). The G-ROM approximation in Fig. 9(d) 
had alternating bands of smaller errors in the proximal region, larger er-

rors in the mid region, and smaller errors again in the distal region. The 
POD-ML approximation in Fig. 9(f) had its smallest errors at the prox-

imal and distal openings and the error appeared to increase gradually 
when approaching the middle of the geometry from either end. In con-

trast, the ML approximation in Fig. 9(e) had patches of larger or smaller 
local error and a band of smaller errors around the proximal opening in 
similar fashion to Fig. 9(b). It seems likely that these differences in local 
error between models are due to the fact that the G-ROM and POD-ML 
relied on the POD basis, whereas the ML did not. For the POD-ML in 
particular, the multiplication of the approximated POD coefficients by 
the known POD basis may have imparted characteristics of the bound-

ary conditions stored in the POD basis onto the resulting displacement 
field prediction which were not captured by the direct parameter-to-

displacement mapping. This may account for the local errors of the ML 
approximations having a comparatively random distribution that was 
much less affected by regional proximity to boundaries. However, it is 
still not clear why the error at the distal boundary appeared to decrease 
for the POD-ML and increase for the G-ROM.

The “patchy” nature of the ML model error in Fig. 9 also high-

lights a potential path for improving the ML models by building spatial 
structure into the approximation. This can be done by penalizing large 
deviations between values at nearby nodes – rewarding smoothness – 
as part of the loss function. A natural first step toward encoding this lo-

cality is to consider the mass matrix from the FE construction, which 
characterizes connections in the mesh. Of course, once we have added 
the mass matrix into the ML loss function, it would be natural to try 
to incorporate other operators from the FE in a similar way to penalize 
model outputs that violate the underlying partial differential equations. 
This is the approach of “physics-informed” machine learning; see, e.g., 
[44] for background and [45] for one implementation using TensorFlow. 
The low-dimensional inputs and high-dimensional outputs also point to 
the potential for using data reduction techniques such as what we have 
implemented with POD-ML or auto-encoders [46] (see also, e.g., [47, 
Section 6]) to reduce the dimension of the target data before fitting 
with ML. Our trials with a POD-ML models yielded improvements in 
computational cost compared to our ML models which mapped to the 
full displacement field. However, POD-ML did not provide any benefits 
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in terms of model accuracy. We did attempt some preliminary inves-

tigation of auto-encoder methods for ML, but they did not seem to 
materially improve the accuracy or, due to the cost of decoding, the 
online time for this problem case. We plan to further develop our im-

plementation of POD-ML and perform a more extensive exploration of 
auto-encoder methods to build more effective ML models going for-

ward.

5. Conclusions

This work presented FE simulations that illustrated the deformations 
of the rat vagina during ex vivo inflation testing. Differently from our 
previous study [22], the FE simulations described the effect of a pre-

imposed tear on the mechanical response of the vaginal tissue. These 
simulations, for eight different sets of material parameters and thirty 
values of luminal pressure, were used as snapshots to implement and 
compare two fundamentally different strategies: a simplified, linearized 
G-ROM and a straightforward ML approach with various NN architec-

tures. In addition, we combined elements of both strategies to imple-

ment a POD-ML approach which was compared to both the G-ROM and 
the ML approaches.

Each technique was used to produce approximations of the snap-

shots, and these approximations were compared in terms of accu-

racy and both offline and online computational costs. It was found 
that, when approximating the FE-based snapshots in the reconstruc-

tive regime, G-ROM was both more accurate and less computationally 
expensive than the ML models. The ML model for which approxima-

tions had the lowest error was outperformed in terms of error by the 
G-ROM with a POD basis of size 𝑙 = 11, and the G-ROM approximations 
at comparable levels of error had lower online times than those from 
ML models. When using a POD-ML approach, the online computational 
cost of the ML strategy was comparable to the G-ROM, but the POD-ML 
did not improve on the error performance of the ML models. The offline 
times for training ML models were an order of magnitude larger than 
the offline time needed to train even the most expensive G-ROM with 
a POD basis with 𝑙 = 100, and the offline training time of the POD-ML 
was one order of magnitude greater than the offline time of the G-ROM 
for the same size of POD basis.

To the authors’ knowledge, this comparison of basic numerical and 
data-driven model reduction techniques for approximating the defor-

mations of anisotropic hyperelastic soft biological tissues is the first of 
its kind. While these findings suggest that the G-ROM is a superior or-

der reduction method for this specific reconstructive task, there may be 
more complex forms of NN or other ML methods which would be more 
competitive than those employed here, and ML techniques could still 
be preferred for certain model reduction use-cases due to their ease of 
implementation and adaptability to the predictive regime. Just as the 
ML methods chosen for the G-ROM versus ML comparison were fairly 
simple, more advanced G-ROM methods (e.g., using a classic ROM dis-

cretization of the fully nonlinear equations and equipping the resulting 
ROM with hyperreduction [35,48,49]) could also be evaluated in future 
comparisons of computational cost and accuracy. Additionally, future 
inquiries could compare the predictive capabilities of ML models to 
a predictive regime technique for G-ROM such as the POD interpola-

tion described in Remark 2.2. In general, the successful implementation 
of both techniques for our simplified model of ex vivo vaginal tissue 
deformations indicated potential for their application to more realistic 
simulations. Thus, future studies will need to investigate model reduc-

tion techniques for the approximation of FE models of the vagina with 
more realistic geometries and boundary conditions, as well as tear ini-

tiation and propagation, to better reproduce the in vivo characteristics 
of this important reproductive organ and accurately simulate vaginal 
tearing during childbirth. The results herein laid a solid foundation for 
further investigations of G-ROM and ML as competing options for real-

time simulation of maternal birth trauma.
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