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A  simple  model  is presented  for the  description  of  relaxation,  creep,  and  strain  stiffening  phenomena
that  are  observed  in  parallel-fibered  collagenous  tissues  such  as  ligaments  and  tendons.  In the  model
formulation,  the  tissues  are  assumed  to  be  composed  of  collagen  fibers  aligned  along  their  physiological
loading  direction.  The  collagen  fibers  are  gradually  recruited  under  strain  and  are  arranged  in parallel
with  a  Maxwell  element  which  accounts  for  the  viscoelasticity  of  the  proteoglycan-rich  matrix.  Once
onstitutive model
reep
elaxation
train-stiffening
iscoelasticity
igaments
endons

straight,  the  collagen  fibers  are  assumed  to  behave  as  linear  elastic  springs.  Experimental  data  published
by  Hingorani  et  al.  [1]  are  used  to  estimate  the  five  model  parameters  by fitting  relaxation  and  strain
stiffening  data  and  the  predictions  are  evaluated  by  using  creep  data.  The  influence  of  each  parameter  on
describing  relaxation,  creep,  and  strain  stiffening  is presented.  The  modeling  results  demonstrate  that,
by considering  the  fibers’  recruitment  and  assuming  that the  matrix  is  linear  viscoelastic,  a  conceptually
simple  model  can describe  relaxation,  creep,  and  strain  stiffening  phenomena  in  ligaments  and  tendons.

© 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
. Introduction

Collagenous tissues such as ligaments and tendons are charac-
erized by long-term viscoelastic properties. They exhibit a slow
ontinuous increase in strain over time, or creep, when subjected
o a constant stress and a slow continuous decrease in stress over
ime, or stress relaxation, when subjected to a constant strain. The

icro-structural origin of the long-term viscoelasticity of these
issues is still unknown and subject of debate among experts in
iomechanics. Synchrotron X-ray scattering studies coupled with
echanical testing have indicated that the collagen fibers, which

onstitute the main load bearing components of the tissues, may
e intrinsically viscoelastic [2] and that the interface between the
ollagen fibers and the surrounding proteoglycan-rich matrix may
lso determine the viscoelasticity of the tissues [3].  In many stud-
es, however, the viscoelasticity of the tissues has been attributed
o the proteoglycan-rich matrix that surrounds the collagen fibers
4–7].

The difference in the experimental findings suggests the need
or more studies aimed at understanding the mechanisms that

ontrol the long-term viscoelasticity in ligaments and tendons. As
uggested early by Fung [8] and experimentally observed by Thorn-
on et al. [9] and Gupta et al. [7],  different structural components

∗ Corresponding author. Tel.: +1 540 231 5905.
E-mail addresses: ratchada@vt.edu (R. Sopakayang), devita@vt.edu (R. De Vita).

350-4533/$ – see front matter ©  2011 IPEM. Published by Elsevier Ltd. All rights reserve
oi:10.1016/j.medengphy.2011.04.012
of the tissues and their organization are responsible for different
viscoelastic phenomena: the recruitment of collagen fibers gov-
erns creep [9] while sliding between collagen fibrils/fibers due
to the presence of the proteoglycan-rich matrix is predominant
in relaxation [7]. Together with histo-mechanical experiments,
mathematical models that are formulated by accounting for the
micro-structure of collagenous tissues can help in elucidating the
relative role of different components of these tissues in determining
their long-term viscoelasticity.

The most successful viscoelastic models for creep and relaxation
in collagenous tissues are the quasi-linear viscoelastic (QLV) mod-
els introduced by Fung [8].  Despite their enormous success, the
QLV models have been shown to have limitations since they cannot
account for creep rate and relaxation rate dependency as exhibited
by ligaments at high stress and strain levels, respectively [10] and,
most importantly, cannot interrelate creep and relaxation [11,12].
Nonlinear viscoelastic theories, such as Schapery’s theory and the
modified superposition method, have been proposed to overcome
some of the limitations of the QLV models [13]. Both the QLV models
and the newly proposed models are, however, phenomenologi-
cal models with parameters that lack physical meaning and do
not relate to the micro-structural changes that are associated with
creep and relaxation.
The long-term viscoelasticity of ligaments and tendons has
been described by several structurally based constitutive models
[9,14–22]. However, only in the linear viscoelastic model proposed
by Thornton et al. [9] creep was predicted from relaxation and this

d.
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as accomplished by accounting for the recruitment of collagen
bers. By performing histological studies, the authors observed that
he collagen fibers were gradually recruited during creep due to
he increase in strain over time. Moreover, they found that during
elaxation only a discrete group of fibers was recruited at the fixed
onstant strain. Their model was, however, formulated by assum-
ng a specific geometry for the ligaments and arrangement of the

avy collagen fibers.
A simple constitutive framework for modeling relaxation and

reep including the strain stiffening in parallel-fibered collage-
ous tissues is presented. The collagen fibers are assumed to be
riented along the physiological direction of loading. They grad-
ally lose their waviness and become straight under strain at
hich point they behave as linear elastic springs. The collagen
bers are arranged in parallel with the surrounding matrix that
xhibits a Maxwell-type viscoelastic behavior. The model param-
ters that define the relaxation and strain stiffening phenomena
re estimated by using published experimental data by Hingorani
t al. [1] on rabbit medial collateral ligaments and are then used
o predict creep. The influence of each parameter on describing
he long-term viscoelastic properties of collagenous tissues is also
nalyzed.

. Model formulation

In this study, the overall viscoelastic behavior of ligaments and
endons is assumed to be determined by their major components:
he collagen fibers and the intervening proteoglycan-rich matrix.
he collagen fibers are assumed to be aligned along the direction
f loading. They are wavy when unstrained and become gradu-
lly straight as the overall tissue’s strain increases. After becoming
traight, the collagen fibers behave as linear elastic springs with
qual elastic modulus. The proteoglycan-rich matrix is assumed to
ehave as a Maxwell-type viscoelastic material, which is described
y a linear elastic spring and linear viscous dashpot arranged in
eries. A schematic of the proposed model, which is described in
etail hereafter, is shown in Fig. 1.

.1. Modeling framework

Ligaments and tendons are modeled as parallel arrangements of
inear elastic collagen fibers, each having different waviness, and a
inear viscoelastic proteoglycan-rich matrix. Then, the total stress

f the tissue, �(t), where t denotes the time, is given by

(t) = �f (t) + �m(t), (1)

Fig. 1. Schematic of the viscoelastic model.
ring & Physics 33 (2011) 1056– 1063 1057

where �f(t) is the stress of the collagen fibers and �m(t) is the stress
of the matrix. Moreover, the strain of the tissue, ε(t), is

ε(t) = εf (t) = εm(t), (2)

where εf(t) is the strain of the fibers and εm(t) is the strain of the
matrix.

Due to the arrangement in series of the elastic spring and viscous
dashpot of the matrix, one has that

�m(t) = �Em (t) = ��m (t), (3)

where �Em (t) and ��m (t) are the elastic and viscous stresses of the
matrix, respectively. Furthermore, the strain of the matrix, εm(t), is

εm(t) = εEm (t) + ε�m (t), (4)

where εEm (t) and ε�m (t) are the strain of the spring and the strain
of the viscous dashpot for the matrix, respectively.

The elastic stress of the matrix is defined as

�Em (t) = EmεEm (t) (5)

where Em denotes the elastic modulus of the matrix. The viscous
stress of the matrix is defined as

��m (t) = �mε′�m (t), (6)

where �m denotes the viscous modulus of the matrix and a prime
denotes the differentiation with respect to t.

After noting that �m(t) = �Em (t) from Eq. (3) and that
�m(t) = �(t) − �f(t) from Eq. (1),  Eq. (5) can be rewritten as

εEm (t) = �(t) − �f (t)
Em

. (7)

Moreover, since ε�m (t) = εm(t) − εEm (t) from Eq. (4) and ε(t) = εm(t)
from Eq. (2),  Eq. (6) becomes

��m (t) = �mε′(t) − �mε′Em (t). (8)

By recalling that �m(t) = ��m (t) from Eq. (3) and using Eq. (8),  Eq.
(1) takes the form

�(t) = �f (t) + �mε′(t) − �mε′Em (t). (9)

Finally, after computing ε′Em (t) from Eq. (7) and substituting the
resulting expression into Eq. (9) one obtains the governing equation
for the system described in Fig. 1

�′(t) + Em

�m
�(t) = �f ′(t) + Em

�m
�f (t) + Emε′(t). (10)

The ratio �m/Em is a characteristic time, �, usually called the relax-
ation time. The above governing equation can be then rewritten
as

�′(t) + �(t)
�

= �f ′(t) + �f (t)
�

+ Emε′(t). (11)

It must be noted that Eq. (11) is derived solely by considering the
arrangement of the constituents of the tissue as depicted in Fig. 1
and the Maxwell-type viscoelastic behavior of the matrix defined in
Eqs. (5) and (6).  In other words, no assumption on the constitutive
behavior of the collagen fibers and, thus, on the stress of the colla-
gen fibers, �f(t), has been made to derive Eq. (11). Once the stress of
collagen fibers, �f(t), is defined, the governing Eq. (11) with appro-
priate initial condition can be used to describe relaxation, creep,
and strain stiffening phenomena.

2.2. Stress of collagen fibers
The stress of the fibrous component of the tissue, �f(t), is defined
by using a structural approach as previously done by other investi-
gators [23–25].  The collagen fibers are assumed to become straight
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t different strains, εs ≥ 0, defined by the following Weibull proba-
ility density function

(εs) = ˛

ˇ

(
εs

ˇ

)˛−1
e−(εs/ˇ)˛

with

∫ ∞

0

p(εs)dεs = 1, (12)

here  ̨ > 0 is the so-called shape parameter and  ̌ > 0 is the so-
alled scale parameter.  The stress of the collagen fibers is given by

f (t) =
∫ ε(t)

0

Ef (ε(t) − εs)p(εs)dεs, (13)

here Ef denotes the elastic modulus of each straight collagen fiber.
he above equation can also be written as (see Appendix A)

f (t) = Ef

[
ε(t) − ˇ

˛
�

(
1
˛

,
(

ε(t)
ˇ

)˛
)]

, (14)

here

(x, y) =
∫ y

0

�x−1e−�d� (15)

s the so-called lower incomplete gamma function.

.3. Relaxation

Relaxation is a continuous decrease in stress that is observed in
ollagenous tissues when they are subjected to a constant strain.
irst, one must note that for any strain history, ε(t), the solution to
he governing Eq. (11) is

(t) = �f (t) +
∫ t

0
Emε′(t)et/�dt + C

et/�
, (16)

here C is a constant that is determined by the initial condition. In
rder to describe relaxation by using Eq. (16), the strain history of
he tissue, ε(t), is assumed to have the form

(t) =
{

at for 0 ≤ t < t0,
ε0 for t ≥ t0,

(17)

here a, ε0 and t0 are constants and at0 = ε0. For 0 ≤ t < t0, ε ′ (t) = a
nd, hence, Eq. (16) takes the form

(t) = �f (t) + Ema�[1 − e−(t/�)] + Ce−(t/�). (18)

y imposing the initial condition �(0) = 0 and noting that ε(0) = 0,
ne obtains that C = 0 in Eq. (18). Therefore, in the interval 0 ≤ t < t0,
he stress of the tissue is

(t) = �f (t) + Ema�[1 − e−(t/�)]. (19)

or t > t0, ε(t) = ε0 and ε ′ (t) = 0 so that Eq. (16) becomes

(t) = �f (t) + Ce−(t/�). (20)

y using the initial condition �(t0) = �f(t0) + Ema�[1 − e−(t0/�)] com-
uted by using Eqs. (19) and (20), one obtains that

 = Ema�(e(t0/�) − 1).  (21)

or t > t0, the stress of the tissue can be written as

(t) = �f (t) + Ema�
(

e((t0−t)/�) − e−(t/�)
)

. (22)

he above equation describes the relaxation that is exhibited by the
issue when a constant strain ε0 is applied. In this case, the stress
f the collagen fibers, �f(t), defined by Eq. (14) is constant and has

he form

f (t) = Ef

[
ε0 − ˇ

˛
�

(
1
˛

,
(

ε0

ˇ

)˛)]
. (23)
ring & Physics 33 (2011) 1056– 1063

2.4. Nonlinear strain stiffening behavior

A nonlinear strain stiffening behavior is observed in collagenous
tissues subjected to a constantly increasing strain. As already noted,
the solution to Eq. (11), for any strain history, is

�(t) = �f (t) +
∫ t

0
Emε′(t)et/�dt + C

et/�
. (24)

In this case, the strain history has the form ε(t) = bt for t > 0 where
b is a constant. Moreover, since the initial condition is �(0) = 0 and,
thus, ε(0) = 0, it follows that C = 0 in Eq. (24) so that the stress of the
tissue is

�(t) = �f (t) + Emb�[1 − e−(t/�)]. (25)

2.5. Creep

Creep is a continuous deformation of the tissue under constant
stress. In this case, the governing Eq. (11) needs to be solved to
compute the strain of the tissue, ε(t). Firstly, by applying Leibniz’s
rule for differentiation of an integral to Eq. (13) one obtains that

�f ′(t) = Ef ε′(t)

∫ ε

0

p(εs)dεs. (26)

It must be noted that for p(εs) defined by Eq. (12),
∫ ε

0
p(εs)dεs = 1 −

e−(ε/ˇ)˛
, which is the Weibull cumulative density function. Thus,

Eq. (26) can be written as

�f ′(t) = Ef ε′(t)(1 − e−(ε/ˇ)˛
). (27)

By using Eq. (27), the governing Eq. (11) can be rewritten as

ε′(t) = �′(t) + (�(t)/�) − (�f /�)

Ef (1 − e−(ε/ˇ)˛
) + Em

. (28)

Eqs. (27) and (28) form a system of ordinary differential equations
that can be solved numerically to find ε(t) and �f(t) after assigning
the initial conditions.

In order to describe creep, the stress history of the tissue, �(t),
is assumed to have the form

�(t) =
{

ct for 0 ≤ t < t0,
�0 for t ≥ t0,

(29)

where c, �0, and t0 are constants and ct0 = �0.
For 0 ≤ t < t0, � ′ (t) = c and �(t) = ct. Then, Eq. (28) becomes

ε′(t) = c  + (ct/�) − (�f /�)

Ef (1 − e−(ε/ˇ)˛
) + Em

, (30)

which can be solved numerically together with Eq. (27) to find the
strain of the tissue, ε(t), by imposing the initial conditions ε(0) = 0
and �f(0) = 0.

For all t > t0, �(t) = �0 and � ′ (t) = 0. Thus, Eq. (28) takes the form

ε′(t) = (�0/�)  − (�f /�)

Ef (1 − e−(ε/ˇ)˛
) + Em

. (31)

The above equation and Eq. (27) form a system of ordinary differen-
tial equations that can be solved numerically to determine the creep
response of the tissue under constant stress �0. The initial condi-
tions, ε(t0) and �f(t0), can be obtained from experimental data and
by using Eq. (13).

3. Results
There were 5 parameters
{

Ef , ˛, ˇ, Em, �
}

that needed to be
computed to describe the viscoelastic properties of ligaments and
tendons by using the proposed modeling framework. Due to the
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ack of a complete set of experimental data on both relaxation,
reep, and strain stiffening phenomena, published results by Hin-
orani et al. [1] on rabbit medial collateral ligaments were used
o analyze the capability of the model. To the authors’ knowledge,
hese data together with similar data published by the same group
10] were the only complete set of data published in the biome-
hanics literature that interrelated creep and relaxation. Thornton
t al. [9] also presented interrelated relaxation and creep data but,
n their manuscript, the information about the strain rate used in
heir experimental protocol was omitted. For this reason, these data
ould not be used to validate the proposed model.

In the above-cited study [1],  stress relaxation experimental data
ere collected by subjecting the ligament to a constant strain,

0 = 0.81%, along its physiological loading direction. Creep exper-
mental data were also collected by subjecting the contralateral
igament to a constant stress, �0 = 2.98 MPa, along the physio-
ogical loading direction. The constant stress value used during
reep was chosen to be the peak stress observed during relax-
tion at ε0 = 0.81% in order to compare relaxation and creep
esponses. Moreover, isochronal stress–strain data were derived
rom relaxation data collected at different constant strain values
t the same time, t = 2.4 s. The relaxation data were then success-
ully fitted by the equation � = 2.4488t−0.2619 with R2 = 0.9769, the
reep data by the equation ε = 0.60681t0.13927 with R2 = 0.9977, and
he stress–strain curve that described the strain-stiffening phe-
omenon by the equation � = 4.095ε1.835 with R2 = 0.9984 [1].  These
hree equations were used in this study to generate the relaxation,
train-stiffening, and creep data that were needed to compute the
odel parameters and evaluate its prediction. The authors used

his approach since digitizing the data from the published graphs
ould have introduced errors with a high level of uncertainty.

The two parameters, Em and �, which characterized the mechan-
cal response of the proteoglycan-rich matrix, and the constant
tress of the collagen fibers, �f, were evaluated by curve fitting
q. (22) to the stress relaxation data generated by the equa-
ion � = 2.4488t−0.2619 and published by Hingorani et al. [1].  It

ust be noted that ε0 = 0.81% and, therefore, t0 = 0.081 in Eq.
22) since the experiments were conducted at a constant strain
ate, ε ′ (t) = a = 10%/s. The curve fitting was performed by employ-
ng the Levenberg–Marquardt nonlinear least squares algorithm
mplemented in Matlab (The MathWorks, Inc.) without imposing
estrictions on Em, �, and �f. The results of the curve fitting are
hown in Fig. 2. The parameters were uniquely determined to be
m = 130.4 MPa, � = 14.91 s, and �f = 0.7962 MPa  with R2 = 0.9719.

The three parameters, Ef, ˛, and ˇ, which defined the response
f the collagen fibers, were then computed by curve fitting Eq.

25) with Eq. (13) to the nonlinear stress–strain data describing
train-stiffening presented by Hingorani et al. [1].  The strain history
as ε(t) = bt,  where b = 10%/s, and Em = 130.4 MPa and � = 14.91 s.
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ig. 2. Stress relaxation data [1] and model fit with Em = 130.4 MPa, � = 14.91 s, and
f = 0.7962 MPa (R2 = 0.9719).
Fig. 3. Nonlinear elastic stress–strain data describing strain stiffening [1] and model
fit  with Ef = 3536 MPa,  ̨ = 1.189, and  ̌ = 0.04124 (R2 ≈ 1).

The parameters were uniquely estimated to be Ef = 3536 MPa,
 ̨ = 1.189, and  ̌ = 0.04124 by using the Levenberg–Marquardt non-

linear least squares algorithm with no restriction on the parameters
(R2 ≈ 1). In Fig. 3, the stress–strain data generated by the equation
� = 4.095ε1.835 and the model fit were reported.

After determining all the model parameters, the creep behavior
was  predicted by numerically solving the system of ordinary differ-
ential equations formed by Eqs. (27) and (31) with �0 = 2.98 MPa  as
dictated by the experiments. The initial conditions were obtained
from the experimental data for t0 = 2.4 s, ε(t0) = 0.69%, and �f(t0)
computed from Eq. (14). Fig. 4 presents the creep data generated
by using the equation ε = 0.60681t0.13927 [1] and the model predic-
tion with Em = 130.4 MPa, � = 14.91 s, Ef = 3536 MPa,  ̨ = 1.189, and

 ̌ = 0.04124 as previously computed by fitting relaxation and strain
stiffening data (R2 = 0.67).

The effect of the model parameters in illustrating relaxation and
creep responses was studied by varying their numerical values.
The parameters that were not varied were fixed to the numeri-
cal values computed by curve fitting the published relaxation and
stress–strain data [1].  Figs. 5 and 7 illustrate the influence of Em

on the relaxation and creep phenomena. One could observe that
as Em increased, the peak stress and the stress over time increased
while creep remained almost unchanged. As shown in Figs. 6 and 8,
changes in � influenced relaxation and creep similarly: both creep
and relation reached faster a steady state value of strain and stress
as � decreased. In Fig. 9, the creep response was presented for dif-
ferent values of the fiber’s elastic modulus, Ef. It could be noted that
as Ef increased, the strain of the tissue decreased over time.

Finally, the effects of the shape and scale parameters of the
Weibull distribution that described the recruitment of collagen

fibers during creep were analyzed. The creep behavior for differ-
ent values of the shape parameter  ̨ is shown in Fig. 10 while the
corresponding Weibull probability density function is presented in
Fig. 11.  It can be seen from Figs. 10 and 11 that, for smaller values of
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Fig. 4. Creep data [1] and model prediction for values of the parameters computed
by curve fitting relaxation and strain-stiffening data (R2 = 0.67).
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Fig. 5. Influence of the elastic modulus of the proteoglycan-rich matrix, Em , on
relaxation.
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Fig. 6. Influence of the relaxation time, � = �m/Em , on relaxation.

Fig. 7. Influence of the elastic modulus of the proteoglycan-rich matrix, Em , on creep.

Fig. 8. Influence of the relaxation time, � = �m/Em , on creep.
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Fig. 9. Influence of the elastic modulus of the collagen fiber, Ef ,  on creep.
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Fig. 10. Effect of the shape parameter, ˛, of the Weibull probability density function
on  creep.
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, more collagen fibers were recruited at lower values of the strain
nd the strain over time increased less while the tissue reached a
teady state faster. Similarly, in Figs. 11 and 12 one could observe
hat as the scale parameter  ̌ increased, the collagen fibers were
ecruited more uniformly. Therefore, the strain of the tissue over
ime increased more and reached a greater steady state value as
resented in Fig. 12.

. Discussion and conclusions

A simple model was presented to describe relaxation, creep,
nd strain-stiffening phenomena in parallel-fibered collagenous
issues. The model, which is schematically presented in Fig. 1,
as formulated by accounting for the mechanical contributions of

he collagen fibers comprising the tissues and the proteoglycan-
ich matrix that surrounds the collagen fibers. In agreement
ith experimental observations and histo-mechanical studies, the

ecruitment of collagen fibers was assumed to be responsible for
he creep response of the tissues [9] while the relaxation response
as mainly determined by the viscoelasticity of the proteoglycan-

ich matrix [7].  Due to the lack of experimental data, the model
arameters were estimated by using published data on rabbit
edial collateral ligaments [1].  Although the results obtained were

romising, additional experimental data were needed to fully val-
date the model and its predictions. For this reason, by varying
he model parameters within the range of values obtained from
urve fitting the experimental data, the model predictions were
lso presented.

Several structurally based models have been proposed to
escribe the long-term viscoelasticity of ligaments and tendons
9,26,14]. Unlike the cited models, the proposed model could
escribe relaxation and creep including the strain-stiffening phe-
omenon. The simple formulation presented here took into account

mportant structural features of the tissues: the collagen fibers
re gradually recruited during creep while the proteoglycan-
ich matrix is mainly responsible for relaxation. The nonlinear
train-stiffening behavior typically observed in these tissues was
escribed by assuming that the nonlinearity in the toe region of
he stress–strain curve is determined by the gradual recruitment
f collagen fibers.

The results of curve fitting the model to the relaxation and
train-stiffening data presented by Hingorani et al. [1] are pre-
ented in Figs. 2 and 3 and the prediction of the creep response
s presented in Fig. 4. The elastic modulus and viscous modulus of
he proteoglycan-rich matrix were found to be Em = 130.4 MPa  and
m = �Em = 1944 MPa  s. The elastic modulus of the collagen fibers,
f, was estimated to be 3.5 GPa which is within the range of val-
es reported in the literature [27]. This value is, however, higher
hat the values for the elastic modulus of collagen fibers reported
n similar studies on structural models for ligaments and ten-
ons [28,24,25,29]. In the cited studies, the collagen fibers were
ssumed to be the only components of the tissues and, since the
ontribution of the proteoglycan-rich matrix was  neglected, the
lastic modulus of the collagen fibers was underestimated. In a
echanical model by Ault and Hoffman [30], in which both the

ollagen fibers and intervening matrix were considered responsi-
le for the overall mechanical behavior of collagenous tissues, the
lastic modulus of the collagen fibers (∼2 GPa) was found to be
omparable to the one found in this study, but the elastic modu-
us of the matrix (∼0.25 GPa) was found to be much higher. This
ifference in the elastic modulus of the matrix can be attributed
o the different assumptions made in the models. Indeed, Ault

nd Hoffman assumed that the matrix is a linear elastic mate-
ial while in this study the matrix is a Maxwell-type viscoelastic
aterial described by the elastic and viscous moduli. The shape

arameter  ̨ and scale parameters  ̌ defined the strain-based
Fig. 13. Effect of the shape parameter, ˇ, of the Weibull probability density function
on  creep.

recruitment process of collagen fibers during strain-stiffening and
creep phenomena. The values computed by fitting the experimen-
tal data collected on rabbit medial collateral ligaments suggested
that several fibers were straight and thus contributed to the total
stress already at very small strains (see Fig. 11 or 13,  continuous
line).

While the model displayed a good agreement with the experi-
mental data, there were limitations that needed to be discussed.
The curve fittings were performed by using the data generated
by the equations given by Hingorani et al. [1] and not by using
the original published data. Clearly, this introduced some errors
in the determination of the numerical values of the parameters.
The model with the parameters computed from fitting relaxation
and strain-stiffening data was then used to predict the creep phe-
nomenon. The comparison with the experimental data shown in
Fig. 4 indicated that the strain in the tissue reached a steady
state much faster in the model prediction than in the experi-
mental study with an error of 11.5% at t = 100 s. The value of the
relaxation time, �, was responsible for determining the time inter-
val required to achieve a steady value of the strain as shown in
Fig. 8.

The effects of the model parameters in illustrating relaxation
and creep are shown in Figs. 5–13. The parameters that defined the
relaxation response were the elastic modulus of the proteoglycan-
rich matrix, Em, and the relaxation time, � = �m/Em. In Fig. 5 the
relaxation response was shown for different numerical values of
Em and in Fig. 6 for different numerical values of � while the values
of the remaining parameters were fixed. As Em increased, the ini-
tial stress of the tissue during relaxation also increased, but the
time needed to reach a steady stress value remained unaltered
(Fig. 5) and was  only affected by changes in � (Fig. 6). These para-
metric studies clearly illustrated that the relaxation phenomenon
was  determined in the model solely by the viscoelasticity of the
proteoglycan-rich matrix, in agreement with recent experimental
findings [7].

The model parameters Ef, ˛, ˇ, �, and Em were also varied to ana-
lyze their influence on creep. In Figs. 7 and 8, the creep response
was  presented for different numerical values of the elastic modu-
lus of the proteoglycan-rich matrix, Em, while the other parameters
were kept fixed. One could note that when Em increased, the
strain during creep appeared to become steady slightly later in
time. The steady value of strain corresponded to the total strain
of the collagen fibers. On the other hand, the model parame-
ter � = �m/Em significantly influenced the creep behavior: as �
increased, the viscous modulus of the proteoglycan-rich matrix
also increased and the strain reached a steady value later in time.

These results demonstrated that the behavior of the tissue dur-
ing creep, as described by the model, was affected mainly by the
viscosity of the proteoglycan-rich matrix and only slightly by its
elasticity.
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ing  during creep and stress–relaxation in soft connective tissues. Journal of
Experimental Biology 1998;201:135–42.

[4] Minns RJ, Soden PD, Jackson DS. The role of the fibrous components and ground
062 R. Sopakayang, R. De Vita / Medical E

The elastic modulus of the collagen fiber, Ef, clearly affected the
reep response of the tissue. From Fig. 9, one could note that as the
ollagen fiber became stiffer, the strain over time decreased during
reep and, thus, the overall tissue was more elastic and less vis-
oelastic as expected. In Figs. 10 and 11 and Figs. 12 and 13,  the
reep responses and the corresponding probability density func-
ions that defined the recruitment of collagen fibers were presented
or different values of the shape parameter, ˛, and the scale param-
ter, ˇ, respectively, as previously described. As  ̨ increased, more
ollagen fibers became straight earlier, at lower values of the strain
f the tissue (Fig. 11)  and, as expected, the strain of the tissue during
reep increased (Fig. 10). By changing the values of ˇ, the probabil-
ty density function described different modes of recruitment: as ˇ
ncreased the collagen fibers became straight more gradually and,
s a consequence, the strain of the tissue over time was  greater.
hese findings emphasized the importance of incorporating the
ecruitment of collagen fibers in the proposed model to reproduce
he creep behavior.

Although the model prediction of creep did not match the data
ery well, the studies on the influence of the model parameters
n creep (Figs. 7–10 and 12)  suggested that the model could fit
he creep data with a set of parameters not computed from fitting
elaxation and strain stiffening data. It is possible that by using the
riginal relaxation data instead of the power law models used by
ingorani et al. [1] a better fit to relaxation and prediction of creep
ould have been obtained. It is speculated that the introduction of

econdary relaxation and creep, which involve irreversible damage
f the tissues, will be necessary to enhance the performance of the
urrent model.

One assumption made in formulating the model was that the
ollagen fibers and the proteoglycan-rich matrix were both strained
hen the entire tissue was strained due to their arrangement in
arallel (see Fig. 1). This was different from what was  assumed

n a viscoelastic model for relaxation presented in a recent study
y Gupta et al. [7],  which focuses mainly on bridging the micro-
tructural and mechanical properties of the collagenous tissues
sing state-of-the art experimental methods. In their model, the
ross-linked fibrils, the inter-fiber and inter-fibrillar matrices were
rranged in series and, thus, deformed with the entire tissue
ut independently. In our model, when the crimped and straight
ollagen fibers were strained, the proteoglycan-rich matrix that
urrounded them was also strained and, thus, were not indepen-
ent. But, in agreement with the studies by Gupta et al. [7],  the
train of the collagen fibers and the matrix were different due to
he strain-controlled recruitment of the fiber. According to our

odel the sliding between the fibers, which was represented by
he Maxwell-type viscoelastic element, was responsible for the

echanical response of the tissue when the collagen fibers were
rimped.

It is worth noticing that, while the model presented here was
or parallel-fibered collagenous tissues, it could be extended to
escribe the viscoelasticity of other connective tissues having spe-
ific material symmetry or random networks of collagen fibers, as
lready done by one of the authors [24]. The orientation of colla-
en fibers was shown not to affect the time-dependent properties
f connective tissues [3].  Therefore, experimental methods such as
hose pioneered by Sacks [31] to incorporate information about the
rientation of collagen fibers into structural models for nonlinear
lastic properties of thick soft tissues could be also extended to
iscoelastic models.
cknowledgment
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Appendix A. Stress of collagen fibers

From Eq. (13), which represents the stress of the collagen fibers,
it easily follows that

�f (t)
Ef

= ε(t)

∫ ε(t)

0

p(εs)dεs −
∫ ε(t)

0

εsp(εs)dεs, (A.1)

where p(εs) is the Weibull probability density function already
defined in Eq. (12). Moreover, it must be noted that∫ ε(t)

0

p(εs)dεs = 1 − e−(ε(t)/ˇ)˛
, (A.2)

which is the so-called Weibull cumulative distribution function.

Let � =
(

εs
ˇ

)˛

. Then, d� = ˛
ˇ

(
εs
ˇ

)˛−1
dεs so that

∫ ε(t)

0

εsp(εs)dεs =
∫ ε(t)

0

εs
˛

ˇ

(
εs

ˇ

)˛−1
e−(εs/ˇ)˛

dεs

= ˇ

∫ (ε(t)/ˇ)˛

0

�1/˛e−� d�. (A.3)

By recalling that the lower incomplete gamma function is defined as

�(x, y) =
∫ y

0

�x−1e−�d�, (A.4)

one obtains that∫ (ε(t)/ˇ)˛

0

�1/˛e−� d� = �

(
1
˛

+ 1,
(

ε(t)
ˇ

)˛
)

. (A.5)

Moreover, by applying the following formula

�(x, y) = (x − 1)�(x − 1, y) − yx−1e−y, (A.6)

one has that

�

(
1
˛

+ 1,
(

ε(t)
ˇ

)˛
)

= 1
˛

�

(
1
˛

,
(

ε(t)
ˇ

)˛
)

− ε(t)
ˇ

e−(ε(t)/ˇ)˛
.

(A.7)

Finally, Eq. (A.1) can be rewritten as

�f (t) = Ef

[
ε(t) − ˇ

˛
�

(
1
˛

,
(

ε(t)
ˇ

)˛
)]

. (A.8)
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