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Abstract

The vagina undergoes large finite deformations and has complex geometry

and microstructure, resulting in material and geometric nonlinearities, compli-

cated boundary conditions, and nonhomogeneities within finite element

(FE) simulations. These nonlinearities pose a significant challenge for numeri-

cal solvers, increasing the computational time by several orders of magnitude.

Simplifying assumptions can reduce the computational time significantly, but

this usually comes at the expense of simulation accuracy. This study proposed

the use of reduced order modeling (ROM) techniques to capture experimen-

tally measured displacement fields of rat vaginal tissue during inflation testing

in order to attain both the accuracy of higher-fidelity models and the speed of

simpler simulations. The proper orthogonal decomposition (POD) method was

used to extract the significant information from FE simulations generated by

varying the luminal pressure and the parameters that introduce the anisotropy

in the selected constitutive model. A new data-driven (DD) variational multi-

scale (VMS) ROM framework was extended to obtain the displacement fields

of rat vaginal tissue under pressure. For comparison purposes, we also investi-

gated the classical Galerkin ROM (G-ROM). In our numerical study, both the

G-ROM and the DD-VMS-ROM decreased the FE computational cost by orders

of magnitude without a significant decrease in numerical accuracy. Further-

more, the DD-VMS-ROM improved the G-ROM accuracy at a modest compu-

tational overhead. Our numerical investigation showed that ROM has the

potential to provide efficient and accurate computational tools to describe vagi-

nal deformations, with the ultimate goal of improving maternal health.
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1 | INTRODUCTION

The rate of cesarean sections has increased globally, with latest available data from 154 countries showing that cesarean sec-
tions account for 21.1% of births.1 In the U.S., the overall rate of cesarean sections was 31.7% in 2019 and the rate of low-risk
cesarean sections was 25.6% in the same year.2 Many factors have contributed to the rise of these rates, such as public percep-
tion that the cesarean delivery is safer than vaginal delivery by preventing pelvic organ trauma and the widespread practice of
defensive medicine among obstetricians. Compared to vaginal delivery, cesarean delivery is associated with increased maternal
mortality and morbidity such as postpartum hemorrhage, hysterectomy, and uterine infections.3 To reduce the number of
unnecessary cesarean sections and improve maternal health outcomes, new scientific-based methods that predict the potential
trauma from delivery in real-time are needed so that the safest mode of delivery can be selected by obstetricians.

In vivo testing methodologies to characterize the properties of reproductive tissues and guide the selection of the
mode of delivery may be invasive, endangering the mothers and their babies. Alternatively, in silico methods that
describe the behavior of the reproductive system during pregnancy and childbirth are ideal since they can potentially
predict non-invasively the clinical outcome of labor. An extensive review of childbirth computational models has been
recently published.4 Several studies have developed subject-specific finite element (FE) models that use MRI scans of
volunteers to construct the geometry of pelvic floor organs, demonstrating the potential for customization of childbirth
models to individual patients.5–7 Unfortunately, due to the complex geometries, boundary conditions, nonlinear consti-
tutive models, and large deformations of the reproductive system, sophisticated FE full order models (FOMs) are com-
putationally expensive. Thus, they remain impractical as real-time predictive tools for patient-specific interventions.
One approach to address these limitations is to create reduced order models (ROMs) of the reproductive system.

The goal of developing ROMs is to reduce the FOMs' computational cost by orders of magnitude without signifi-
cantly reducing their numerical accuracy. Various approaches may be used to accomplish this aim, and some of the
most popular are projection-based ROM methods, such as the proper orthogonal decomposition (POD),8,9 reduced basis
method,10,11 proper generalized decomposition,12 and hierarchical model reduction.13,14 Using projection-based ROMs,
the space of the FOM with a large number of degrees of freedom (e.g., O[106]) is projected onto a subspace with far
fewer degrees of freedom (e.g., O[101]). POD is one of the most common approaches for projection-based ROM in the
fields of fluid and solid mechanics. While the reduced subspace significantly decreases the size of the system of equa-
tions to be solved, computation of nonlinearities is still required at the FOM space, thus limiting the POD-ROM effec-
tiveness. To reduce this computational overhead, different hyper-reduction approaches have been proposed, for
example, the empirical interpolation method15 and the discrete empirical interpolation method.16

ROM techniques have been proposed for real-time simulations of soft tissue deformations for surgical planning and
minimally invasive surgery. Complex simulations of the heart with isotropic, anisotropic, viscoelastic, and active mate-
rial models have successfully been approximated by reduced basis approaches.17–20 Some relevant work using proper
generalized decomposition on cardiac conductivities has also been published.21 Other tissues modeled by ROM include
the liver,22–25 cornea,23,25–27 and inferior turbinate.28,29 Several of the cited investigators have explored various
projection-based model reduction methods,30 discrete empirical interpolation methods,30 and hyper-reduction enhance-
ments18,19,25,30 to handle nonlinearities that characterize soft tissue simulations. However, to our knowledge, model
reduction techniques such as POD have not been used to simulate the real-time deformations of the highly nonlinear
and anisotropic tissues of the reproductive system, especially the very large deformations during childbirth.

In this work, we propose reduced order modeling as an efficient and accurate means of approximating the vaginal
tissue deformation. To this end, we first use our knowledge of the ex vivo micro-structural and mechanical behavior of
the rat vaginal tissue from experimental data31,32 to develop a FOM using the FE method. We then investigate the feasi-
bility of ROM techniques to approximate the deformations of the rat vagina subjected to various levels of luminal pres-
sure and having different collagen fiber organization. More specifically, we extend a newly developed data-driven (DD)
ROM framework to a soft tissue mechanics problem, and we compare it with a classical projection-based ROM
approach both in terms of accuracy and computational cost. This work is a proof-of-concept that demonstrates the
potential of ROM techniques for the development of real-time predictive tools for maternal health.

2 | FULL ORDER MODEL

In this section, we present the first FE model that describes the boundary and loading conditions of rat vaginal tissue
during inflation experiments. By changing the orientation of collagen fibers in the constitutive model selected for
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vaginal tissue, as well as the applied luminal pressure, we generate a set of FOM solutions. This set of solutions consti-
tute the snapshots that are then used to create the ROM solutions as described in Section 3.

2.1 | Mathematical model and physical parameters

The geometry, boundary conditions, and material parameters used to construct the FE model that describes the defor-
mations of rat vaginal specimens subjected to luminal pressure were selected to approximate experimental data.31,32

During the experiments, the vaginal tissue was mounted onto dispensing needles and inflated via a pressure pump with
phosphate buffered saline. One dispensing needle was fixed while the other dispensing needle could slide freely along
the axial direction of the rat vaginal specimens to allow deformations in both axial and hoop directions. The tissue was
pre-loaded to an internal pressure of 1.4 kPa prior to collecting the experimental data. Thus, we constructed our model
geometry based on the shape and average dimensions of the vaginal tissue specimens with the applied pre-load, as well
as the outer diameters of the dispensing needles.31 Construction of the model and subsequent finite simulations for the
vaginal tissue were carried out within Abaqus/Standard (Abaqus 2020, Dassault Systèmes Americas Corp., Waltham,
MA). All simulations were performed on a 24-core Intel® Xeon® Gold 6248R CPU @ 3.00GHz with 191 GB of
usable RAM.

Figure 1A displays the assumed geometry of the pressurized vaginal specimen with dimensions and relevant ana-
tomical regions of the vagina. The geometry resembled a hollow prolate spheroid with an initial maximum outer diame-
ter at mid-span of 10.2 mm, a uniform thickness of .3 mm, and a height of 12 mm. With respect to the axial direction,

FIGURE 1 (A) Isometric, top, and bottom views of the rat vaginal specimen with dimensions and anatomical (proximal, mid, and

distal) regions. (B) Boundary conditions for the rat vaginal specimen used to simulate inflation testing. The annotations ux, uy, and uz denote

the translational displacements of nodes at the boundaries, respectively. The uppermost distal surface was fixed in the hoop and radial

directions and subjected to a constant pressure in the axial direction, while the lowermost proximal surface was fixed. The lumen was

subjected to a surface pressure which was incremented through 30 quasi-static steps, p1 = 2.5 kPa, � � �,p30 = 75 kPa.
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the top, middle, and bottom thirds of the model geometry corresponded to the distal, mid, and proximal anatomical
regions of the vagina, respectively. The inner diameter of the opening at the distal end was set to 4.2 mm and the inner
diameter of the opening at the proximal end was set to 5.16 mm.

Figure 1B displays the selected global Cartesian coordinate system with the base of the proximal end centered at the
origin. This figure also lists the boundary conditions of the model. Following the experimental setup, the lowermost
surface of the proximal end of the model was fixed. The uppermost surface of the distal end was fixed in the hoop and
radial directions, but had no prescribed displacement in the axial direction. Uniform pressure boundary conditions
were applied normal to the internal surface (lumen) and the uppermost distal surface. The pressure on the uppermost
distal surface was included to account for the weight of the upper needle acting on the tissue. Pressures were applied in
the model with ramp functions starting from 0 kPa. The maximum pressure on the uppermost distal surface was set to
1 kPa in all simulations to account for the upper needle. This value was chosen so that the simulation would reflect the
behavior observed in experiments where no negative axial strain occurred using a pre-load of 1.4 kPa.31 Abaqus outputs
for displacement were recorded at the final step of each ramp function to create a quasi-static snapshot corresponding
to a given pressure on the lumen.

To simulate the constitutive behavior of the vagina, the Holzapfel-Gasser-Ogden strain energy model was selected.33

According to the model, the strain energy per unit reference volume of the tissue is given by

W ¼ c
2

I1�3
� �þ 1

D
Jð Þ2�1
2

� lnJ

" #
þ k1
2k2

X2
α¼1

e k2⟨Eα⟩
2½ � �1

n o
, ð1Þ

with

Eα ¼ κ I1�3
� �þ 1�3κð Þ I4 ααð Þ �1

� �
, ð2Þ

where c, D, k1, k2, and κ are material parameters; I1 is the first deviatoric strain invariant of C; J is the elastic volume
ratio given by the determinant, J, of the deformation gradient, F; and I4 ααð Þ ¼aαCaα is a pseudo-invariant of C and aα
is a set of unit vectors that characterize the mean preferred direction of the fibers in the reference configuration. This
form of the strain energy results from a deviatoric-dilational multiplicative split that is used for simplifying numerical
implementation.34 As such, C¼ J�2=3C, where C = F>F is the right Cauchy-Green strain tensor. The operator ⟨�⟩ in
Equation (1) denotes the Macauley bracket.

This form of the Holzapfel-Gasser-Ogden model assumes that two families of fibers are dispersed about mean pre-
ferred directions, a1 and a2, with rotational symmetry and that all families of fibers possess the same mechanical prop-
erties, k1 and k2, and level of dispersion, κ, where 0 ≤ κ ≤ 1/3. In Abaqus, the material coordinates which described a1
and a2 were defined via pseudo-cylindrical local Cartesian coordinate systems for each node. These local Cartesian
coordinate directions were denoted as x', y', and z'. The z'-direction was always aligned with the z-direction from the
global Cartesian coordinate system shown in Figure 1. The local radial direction, x', was defined as aligned with the ray
that was orthogonal to the global z-axis and extended from the global z-axis to the given node. The local tangential
direction, y', was defined as aligned with the ray orthogonal to both x' and z' that pointed in the direction of counter-
clockwise rotation about the global z-axis. For this study, fibers were oriented in the hoop-axial plane of the vagina
which was equivalent to the x'-z' plane at each node. Thus, Abaqus' pseudo-cylindrical scheme described mean pre-
ferred fiber directions in the hoop-axial plane using local Cartesian coordinates for a1 and a2.

The mean preferred fiber directions, a1 ¼ 0, cosβ, sinβð Þ and a2 ¼ 0, cosβ, � sinβð Þ, and fiber dispersion parame-
ter, κ, were chosen to be representative of the collagen fiber organization that was measured experimentally in the tan-
gential (or hoop-axial) plane of the vagina (Figure 9 in reference 32). The angle β was defined relative to the hoop
direction of the vagina, that is the hoop direction was at a 0� angle. The value of this angle in the distal, mid, and proxi-
mal regions of the vagina was defined as βd, βm, and βp, respectively. Then, within each of the three anatomical regions
of the vagina, both families of fibers had the same mean preferred fiber orientation relative to the hoop direction, but
one family of fibers had positive orientation angles and the other negative orientation angles.

The model parameters in Equation (1) were selected to be c = 6 kPa, D = .01, k1 = 15 kPa, k2 = 15, and κ = .25. This
selection was made by varying the parameters c, D, k1, and k2, starting from previous values reported in the literature,33

so that the average of the pressure versus strain data computed over a subset of nodes in the mid region of the vagina
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was comparable to reported experimental data (Figure 2). For this validation, the mean preferred fiber orientations
were set to βd = βm = 35� and βp = 55�, and k2 was always set to be numerically equivalent to k1.

2.2 | Finite element method

For any given set of mean preferred fiber directions defined by μi reported in Table 1, FE solutions at 30 different lumi-
nal pressures, p1 = 2.5 kPa, p2 = 5 kPa, p3 = 7.5 kPa, …, p30 = 75 kPa, were obtained. The pressure was increased from
2.5 kPa to 75 kPa, in equal increments of 2.5 kPa. In Abaqus, an automatic scheme was selected for the pressure ramp
function that increments the load condition from 0 kPa to the target pressure of a given simulation in steps defined as

FIGURE 2 Experimental pressure versus hoop strain and pressure versus axial strain data (continuous lines) with FE corresponding

predictions (dashed lines) at (A), (B) various k1 and k2 and (C), (D) various βd, βm, and βp. The insert in (d) is a schematic of the transverse

cross-section of the coaxial needles holding a vaginal specimen.

TABLE 1 Mean preferred fiber orientations for the distal, mid, and proximal regions of the vagina used to generate the snapshots for the

ROMs. The orientations were defined relative to the hoop direction of the vagina

Parameter set βd βm βp

μ1 35� 35� 55�

μ2 35� 35� 65�

μ3 25� 25� 65�

μ4 35� 25� 55�

μ5 25� 35� 55�

μ6 35� 25� 65�

μ7 25� 35� 65�

μ8 25� 25� 55�
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fractions of the target pressure. The initial step size was set to 10�3 times the target pressure, and the minimum step
size to 10�8 times the target pressure. The iterative Newton–Raphson solver was used to solve the resulting nonlinear
system for each pressure value. When the solver failed to converge with the initial step size, it reduced the step size
within the bounds until convergence was achieved and continued to the target pressure.

To determine the FOM (FE) solution for each set of parameters, μ1, …, μ8, at each of the luminal pressure values, p1,
p2, p3, …, p30, a total of n = 8 � 30 nonlinear systems of equations were solved in Abaqus using the Newton–Raphson
method. The final Newton–Raphson iterations of the weak form of the equilibrium equations for each set of parameters
and luminal pressure values ultimately resulted in the well-known FE linear system of equations35:

K iui ¼ f i for i¼ 1,…,n, ð3Þ

where Ki is the m � m tangent stiffness matrix of the linearized FE system, fi is the m � 1 load column vector
corresponding to a given set of material parameters and the discrete luminal pressure at which the system was linear-
ized, and ui is the m � 1 displacement column vector for which the linearized system is solved. The integer
m represents the number of degrees of freedom. We stored the final Newton–Raphson iterations that provided the final
solutions for each set of parameters and luminal pressure values into n vectors, {u1, u2, …, un}, each belonging to ℝm.
This set of vectors was then used to build and train the ROM as described in the next section.

The vaginal tissue was meshed in Abaqus using a structured scheme with second-order quadratic hexahedral ele-
ments (C3D20). A mesh convergence study was performed via h-refinement with the maximum element size ranging
from 4 to .2 mm. For our convergence study, we considered a single parameter set, denoted μ1 in Table 1, for which the
mean preferred fiber directions were defined by βd = βm = 35� and βp = 55�, and the luminal pressure was set to
75 kPa. Meshes of different sizes were compared in our convergence study using the mesh energy, Eh, for each maxi-
mum element size, h, given by

Eh ¼ 1
2

uh > Khuh
� �

, ð4Þ

where uh is the m � 1 displacement column vector, and Kh is the m � m tangent stiffness matrix of the linearized sys-
tem for our chosen material parameters and luminal pressure. The matrices Kh and vectors uh are recorded from the
last Newton iteration of a solution for a given parameter set and mesh size. To assess convergence, we calculate the rel-
ative mesh energy norm error as follows:

E Eh
� �¼ jEh�Ehmin j

jEhmin j , ð5Þ

where Ehmin is the mesh energy for the mesh with the smallest maximum element size in the convergence study (in our
case, h = .2mm) which is used as a benchmark against which all other mesh energies, Eh, are compared.

hh
h

h

FIGURE 3 Mesh convergence study via h-refinement using mean preferred fiber orientations given by βd = βm = 35� and βp = 55� and
luminal pressure p30 = 75 kPa. The relative mesh energy norm error is calculated as the relative error in the mesh energy for a given mesh

size with respect to the mesh energy of finest mesh size (h = .2 mm).
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The relative mesh energy norm error values are plotted against the number of nodes for the respective mesh sizes in
Figure 3. Mesh convergence was considered achieved at h = .6 mm, where the relative mesh energy norm error was
2.6% relative to the h = .2 mm mesh. While we could have used a slightly finer mesh than h = .6 mm, anything more
refined would have drastically increased computational cost for a negligible improvement in accuracy. For example, the
FE simulation for our chosen parameter using a mesh with h = .4 mm (Figure 3) had a relative mesh energy norm error
of .7% but took 451 s to complete compared to 144.7 s for h = .6 mm. Given the diminishing returns on relative mesh
energy norm error improvements and the large increases in computational cost for meshes more refined than
h = .6 mm, we chose h = .6 mm as the maximum element size for the FOM simulations used to produce our training
data. The final mesh contained 672 elements and 4864 nodes. Since each node had 3 degrees of freedom, the total num-
ber of linear systems in Equations (3) was m = 14,592.

3 | REDUCED ORDER MODEL

In this section, we outline the construction of the standard Galerkin ROM (G-ROM) for the linear systems in Equa-
tions (3) (Section 3.1). We also construct the data-driven variational multiscale ROM (DD-VMS-ROM), which intro-
duces a correction term to account for the effect of the discarded ROM modes and increase the ROM accuracy
(Section 3.2). Moreover, we describe the criteria used to assess both the G-ROM and the DD-VMS-ROM performance.

3.1 | Galerkin-ROM

In this section, we briefly describe the construction of the standard Galerkin ROM, which is based on the Galerkin
method. First, we use the POD method9 to determine an orthonormal basis, the POD basis ψ if gli¼1 of dimension l,
l≤ min m, nf g, for the set spanned by n vectors, {u1, u2, …, un}, each belonging to ℝm. These vectors will be referred to
as the snapshots. Specifically, we solve the following straightforward minimization problem to find the POD basis
ψ if gli¼1 of dimension l9:

min ψ1, …, ψ lf g
Xn
j¼1

uj�
Xl

i¼1

⟨uj, ψ i⟩ℝmψ i

�����
�����
ℝm

2

ð6Þ

subject to ⟨ψ i, ψ j⟩ℝm ¼ δij for 1≤ i,j≤ l : ð7Þ

In the above equations, ⟨ � , � ⟩ℝm denotes the inner product in ℝm and �k kℝm ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
⟨ � , � ⟩

p
ℝm denotes the corresponding

canonical norm. Let U be the m�n matrix whose columns are the snapshots: U = [u1, …, un]. Let d≤ min m, nf g be
the rank of U. It can be shown that the above minimization problem reduces to the solution of the following eigenvalue
problem9:

UU > ψ i ¼ λiψ i for i¼ 1,…,d : ð8Þ

Thus, the POD basis ψ if gli¼1 of dimension l can be computed by solving the symmetric m�m eigenvalue problem
in Equations (8). We note that the POD basis could be solved more efficiently by using the method of snapshots36 but,
even without using this method, the POD basis was quickly computed by solving the eigenvalue problem in Equations
(8). Although there are no generally accepted rules on how l must be selected, a popular choice is to use the relative
information content (RIC) index,37 which is the ratio of the modeled to the total energy contained in the system U:

E ¼
P l

i¼1λiPd
i¼1λi

: ð9Þ

Let Ψ be the m � l matrix whose columns are the POD basis vectors: Ψ = [ψ1, …, ψ l]. The m � 1 column vector ui

can be approximated by m � 1 column vector

SNYDER ET AL. 7 of 21
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uROM
i ¼Ψζ i, for i¼ 1,…,n , ð10Þ

where ζ i is an unknown l � 1 column vector which must be solved for. The substitution of the uROM
i into the FE system

of Equations (3) yields:

K iΨζ i ¼ fi for i¼ 1,…,n : ð11Þ

By multiplying both sides of Equations (11) by Ψ>, we obtain the Galerkin ROM (G-ROM):

Ψ > K iΨζ i ¼Ψ > fi for i¼ 1,…,n : ð12Þ

On the left side of Equations (12), Ψ>KiΨ is an l � l matrix, and, on the right side, Ψ>fi is an l � 1 column vector.
Subsequently, Equations (12) can be solved to find an l � 1 column vector, ζ i. Thus, the large, m-dimensional FOM sys-
tem of Equations (3) has been reduced to the much lower l-dimensional G-ROM system of Equations (12) (l � m).
This, in turn, implies that the computational cost to solve the G-ROM system of equations is significantly lower than
the computational cost to solve the FOM system of equations.

To evaluate the ROM performance, we use the relative Frobenius norm of the error, E, calculated over all the mesh
points. Specifically, we use the following formula:

E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
i¼1

uROM
i �P l

j¼1⟨u
FOM
i , ψ j⟩ℝmψ j

��� ���2
ℝmP l

j¼1⟨u
FOM
i , ψ j⟩ℝmψ j

��� ���2
ℝm

vuuuut ð13Þ

where uROM
i is the ROM approximation of the FOM displacement corresponding to the i-th parameter set which is

determined via Equations (10) using ζ i solved for in Equations (12).

Remark 1. To construct the G-ROM in Equations (12), we start with the linear system in Equations (3), that
is, the linear system obtained at the final iteration in the Newton–Raphson method applied to the nonlinear
system of equations that result from our boundary value problem. Thus, the resulting G-ROM in Equations
(12) form a low-dimensional linear system that can be efficiently solved in the online stage. Of course, this
efficiency only applies to the reconstructive regime that we consider in this investigation, that is, when test-
ing is carried out for the same parameter values as those used to train the model. We plan to extend our
approach to the predictive regime in a future study.

3.2 | Data-driven variational multiscale ROM

ROM closure models are correction terms that are added to the classical G-ROM in order to increase its accuracy. The
ROM closure models aim at representing the effect of the discarded ROM basis functions {ψ l+1, …, ψd} on the ROM dis-
placement solutions in the low-dimensional space spanned by the ROM basis functions {ψ1, …, ψ l}. In computational
fluid dynamics, the ROM closure models can significantly increase the ROM accuracy (see the survey in reference 37).
To our knowledge, there are no ROM closure models for solid mechanics and, in this section; we take a first step to fill
this gap.

To construct the ROM closure model, we utilize DD algorithms and leverage the hierarchical structure of the POD
basis within a variational multiscale (VMS) framework.38,39 Specifically, we extend the DD-VMS-ROM framework from
fluid flows40–42 to soft biological tissues. To this end, in addition to the m � l matrix Ψ defined in Equations (10), where
d > l, we consider the m � (d � l) matrix Ψ

0
, which contains the ROM basis functions {ψ l+1, …, ψd}. Thus, if we replace

the ansatz for the ROM deformation solution in Equations (10) with

uROM
i ¼Ψζ iþΨ 0ζ 0i for i¼ 1,…,n , ð14Þ

8 of 21 SNYDER ET AL.
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where ζ0i is an unknown (d� l)� 1 column vector corresponding to Ψ
0
, we expect a more accurate ROM approxima-

tion of the displacement solution. Substituting the ROM solutions (14) into the FE Equations (3), we obtain

K iΨζ iþK iΨ
0ζ 0i ¼ fi for i¼ 1,…,n : ð15Þ

Next, we perform a Galerkin projection of Equation (15) onto the space spanned by the POD basis ψ if gli¼1, that is,
we multiply Equations (15) by Ψ>:

Ψ > K iΨ
� �

ζ iþ Ψ > K iΨ
0� �
ζ 0i ¼Ψ > fi for i¼ 1,…,n : ð16Þ

Of course, since we use more ROM basis functions (and unknowns in ζ0i) in Equations (16) than in Equations (12),
we expect the former to yield a more accurate solution than the latter. We want, however, to maintain a low computa-
tional cost, similar to the computational cost of the G-ROM in Equations (12). To this end, we make the following
ansatz:

Ψ > K iΨ
0� �
ζ 0i ≈Aζ iþ ζ >

i Bζ i for i¼ 1,…,n , ð17Þ

where A is an l � l matrix and B is an l � l � l array that need to be determined.

Remark 2. Since the starting point in the DD-VMS-ROM construction is the FE linear system in Equa-
tions (3), our choice of a quadratic ansatz in Equations (17) needs to be explained. Our initial choice was a
linear ansatz, that is, Ψ > KiΨ0� �

ζ0i ≈Aζi. However, in our numerical investigation, the linear ansatz did not
produce meaningful results, providing a matrix A with zero entries. Thus, the numerical results suggested
that the linear ansatz is simply not capable of providing a good approximation of our data. To address this
issue, we decided to replace the more natural linear ansatz with the quadratic ansatz in Equations (17),
which yielded nonzero entries both in A and in B. We note that, although the elements of A were nonzero
when the quadratic ansatz was used, they were still much smaller than the elements of B, suggesting that
the linear term contributed relatively little to the solution.

We also note that, although the DD-VMS-ROM construction is based on the FE linear system in Equations (3),
this linear system represents just the final iteration in the Newton–Raphson method used to solve the nonlinear
boundary value problem that describes the deformations of the vaginal tissue under pressure. Thus, using a nonlinear
(quadratic) ansatz in this context seems justified. Furthermore, we note that the quadratic ansatz selected here is typ-
ical in computational fluid dynamics as it mimics the nonlinear operator in the Navier–Stokes equations. However,
other nonlinear operators appear in the governing equations of anisotropic nonlinear elastic materials described by
Equations (1)–(2). In this study, we chose a quadratic ansatz for simplicity but one should investigate the use of other
nonlinear ansatzes for the DD-VMS-ROMs. Finally, we note that we plan to implement a fully nonlinear G-ROM
with the selection of a nonlinear ansatz for the DD-VMS-ROM in future. In that case, the DD-VMS-ROM would
likely not have a significantly greater computational cost than the G-ROM.

Substituting the ansatz in Equations (17) into Equations (16), we obtain the DD-VMS-ROM:

Ψ > K iΨ
� �

ζ 0iþAζ iþ ζ >
i Bζ i ¼Ψ > f i, for i¼ 1,…,n: ð18Þ

The DD-VMS-ROM in Equations (18), like the G-ROM in Equations (12), is solved for the unknowns in ζ i, but
yields a more accurate approximation when ζ i is substituted into Equations (10) since it includes a model for the
unknowns in ζ 0i. We also note that the DD-VMS-ROM in Equations (12) is a nonlinear (quadratic) system of equations
in the unknown ζ i. This is in contrast with the G-ROM in Equations (12), which is a linear system of equations. To
solve the nonlinear system of Equations in (18), we use the Newton–Raphson method.

SNYDER ET AL. 9 of 21
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To construct A and B in the DD-VMS-ROM in Equations (18), we use DD modeling43 and solve the following least
squares problem:

min
A � ℝl�l,B � ℝl�l

Xn
i¼1

ψTK iψ
0� �
ζ 0FOMi �AζFOMi � ζFOMi

T
ΒζFOMi

��� ���2
ℝm

, ð19Þ

where ζ0FOMi and ζFOMi are computed from the FOM (i.e., FE) numerical approximation. Specifically, we set

uFOM
i ¼ΨζFOMi þΨ 0ζ 0FOMi for i¼ 1,…,n, ð20Þ

multiply Equations (20) to the left by Ψ> and Ψ 0 >, use the orthonormality of the ROM basis functions (i.e., Ψ> Ψ = I,
Ψ> Ψ

0
= 0, Ψ 0 > Ψ = 0, and Ψ 0 > Ψ

0
= I), and finally obtain

ζFOMi ¼Ψ > uFOM
i for i¼ 1,…,n, ð21Þ

ζ 0FOMi ¼Ψ 0 > uFOM
i for i¼ 1,…,n: ð22Þ

The solution of the least squares problem in Equations (19) can be obtained using Algorithm 1.41

In summary, we use Algorithm 1 to solve the least squares problem in Equation (19) and obtain A and B in the off-
line stage and then we use the DD-VMS-ROM in Equations (18) with the computed A and B in the online stage.

We note that the dimension of the quadratic (nonlinear) system in the DD-VMS-ROM in Equations (18) is the same
as the dimension of the linear system of the G-ROM in Equations (12), that is, we solve l equations with l unknowns,
where l is relatively small. Thus, we expect that the online computational costs of the DD-VMS-ROM and G-ROM are
of the same order. We emphasize, however, that since the DD-VMS-ROM in Equations (18) includes the computation
of the matrix A and the array B that model the effect of the unknowns in ζ ', we expect the DD-VMS-ROM to be more
accurate than the G-ROM.

To evaluate the DD-VMS-ROM performance, we again use the relative Frobenius norm of the error. Specifically, we
substitute the solution ζ i from Equation (18) into Equation (10) to determine the ROM approximation, uROM

i , which we
then use in Equation (13) to calculate E.

3.2.1 | Ideal ROM

As a benchmark for the performance of the DD-VMS-ROM, we employ the ideal ROM (I-ROM), which is a theoretical
model that represents the best possible performance of the DD-VMS-ROM. To construct the I-ROM, we consider the
DD-VMS-ROM framework starting from Equations (16).

However, instead of using the ansatz in Equation (17) to approximate Ψ > K iΨ
0� �
ζ 0i in terms of ζ i, we substitute

ζ i'
FOM in place of ζ0i to obtain the I-ROM closure model:

Ψ > K iΨ
� �

ζ iþ Ψ > K iΨ
0� �
ζ i

0FOM ¼Ψ > f i, for i¼ 1,…,n: ð28Þ

Thus, in the I-ROM in Equations (28) we solve for the unknowns in ζ i without needing to construct A and B. The
approximation, uROM

i , obtained by substituting ζ i from Equations (28) into Equations (10) can then act as a reference to
determine how well the DD-VMS-ROM performed compared to what is theoretically achievable. As with the other
ROM approaches, the performance of the I-ROM is determined by substituting uROM

i in Equations (13) to calculate the
relative Frobenius norm error. We emphasize again that the I-ROM in Equations (28) is just an idealized/theoretical
model that cannot be used in practice since it relies on ζ i

'FOM, which is not generally known.

10 of 21 SNYDER ET AL.
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ALGORITHM 1

1: Following,41 rewrite the optimization problem in Equation (19) as the following least squares problem:

min
x � ℝl2þl3 Ex�dk k2ℝnl , ð23Þ

where E is an nl� l2þ l3
� �

matrix constructed from ζi
FOM, d is an nl � 1 column vector constructed from

Ψ > KiΨ0� �
ζ0FOMi , and x is an unknown (l 2+ l 3)� 1 column vector defined in terms of the entries of A and B.

2: Use the truncated SVD algorithm to solve the linear least squares problem in Equation (23). Specifically

i. Calculate the SVD of E:

E¼UΣV > , ð24Þ

where U is an nl � nl orthogonal matrix, Σ is a nl � (l 2 + l 3) rectangular diagonal matrix, and V is an
(l 2 + l 3) � (l 2 + l 3) orthogonal matrix. Let m be the rank of matrix E (and Σ) and let σj for j = 1, …, m,
be the diagonal entries of Σ.

ii. For j = 1, …, m, select a tolerance σ jð Þ
tol ¼ σj.

(a) For each σ jð Þ
tol, construct a new diagonal matrix bΣ jð Þ

by setting its diagonal entries to be equal to the
diagonal entries of Σ, i.e., bσk ¼ σk, when σk ≥ σ jð Þ

tol with k = 1, …, m.

(b) For each σ jð Þ
tol, construct the truncated SVD of E, bE jð Þ

, by setting

bE jð Þ ¼ bU jð ÞbΣ jð Þ bV jð Þ >
, ð25Þ

where bU jð Þ
has the column vectors of U and bV jð Þ

has the row vectors of V corresponding to bΣ jð Þ
.

(c) For each σ jð Þ
tol, the solution of the least squares problem in Equations (23) is

x jð Þ ¼ bV jð ÞbΣ jð Þ�1 bU jð Þ >
d: ð26Þ

(d) For each σ jð Þ
tol, solve the resulting DD-VMS-ROM in Equations (18), with the entries of A( j) and B( j)

computed from x( j), and calculate the average error, E jð Þ, by using formula in Equation (13).

iii. Select the optimalej (and corresponding σ
ej� �
tol ) such that

E ej� �¼ min j¼1,…,mE jð Þ, ð27Þ

and select the corresponding optimal x
ej� � from which the optimal entries of A

ej� � and B
ej� � are computed.

SNYDER ET AL. 11 of 21
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4 | RESULTS

The FOM solutions (snapshots) that were used to create the POD basis for the ROMs described a diverse set of deforma-
tions experienced by the vaginal tissue under pressure. These solutions varied with changes in luminal pressure, p1, …,
p30, and changes in collagen fiber orientation defined by βp, βm, and βd in the proximal, mid, and distal vagina, respec-
tively. As expected, the magnitude of the displacement field increased as the applied internal pressure increased, for
each fiber orientation set considered (Figure 4). Variations in the magnitude of the displacement field for FOM solu-
tions obtained for various collagen fiber orientation sets were also observed. These solutions resulted in different shapes
of the deformed geometries at the same applied internal pressure (Figure 5). This was expected, as a change in fiber ori-
entation from βd = 25� to βd = 35� in the distal region and from βm = 25� to βm = 35� in the mid region would change
the mechanical response of either region by making it more compliant in the hoop direction. Similarly, a change in the
proximal region from βp = 55� to βp = 65� would make the tissue slightly stiffer in the axial direction. Thus, the mid
and distal regions of the vagina deformed in a more prolate-like shape when their fibers were oriented at 25�, and the
proximal region deformed in a more prolate-like shape when the fibers were oriented at 65�. The model depicted in
Figure 5B differed from that in Figure 5A by its mid region fiber orientation of βm = 35�, which resulted in greater
deformation and thus a rounder shape through the mid region at the same luminal pressure. Both the distal and proxi-
mal regional fiber orientations of the model in Figure 5C differed from those of Figure 5A with βd = 35� and βp = 55�.
These differences resulted in a relative increase in the magnitude of displacement in the distal region and a relative
decrease in the magnitude of the displacement in the proximal region for the model of Figure 5C compared to the
model in Figure 5A under the same luminal pressure, whereas the mid regions of both are similar in terms of displace-
ment magnitude. Consequently, the overall model in Figure 5C is rounder on the distal end and comparatively prolate
on its proximal end. Lastly, Figure 5D depicts an FE solution with fiber orientations that are entirely different from
those for the solution in Figure 5A. With βd = βm = 35� and βp = 55�, the FE model in Figure 5D had relatively larger
displacement magnitude in the mid and distal regions and relatively smaller displacement magnitude in the proximal
region compared to the FE model in Figure 5A at the same luminal pressure. Thus, the modeled vaginal canal in
Figure 5D was rounder through the mid and distal regions but more prolate in the proximal region, while the modeled
vaginal canal in Figure 5A had prolate mid and distal regions and a rounder proximal region.

FIGURE 4 (A) Undeformed mesh of the FE model showing the distal, mid, and proximal regions of the vagina. (B)–(D) FOM solutions

for various values of the applied internal pressure pi, with βd = βm = 35� and βp = 55�. The top, middle, and bottom in each FE model

correspond to the distal, mid, and proximal anatomical regions of the vagina, respectively.
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The decay of the eigenvalues of UU> from Equation (8) indicated that the basis functions corresponding to the grad-
ually decreasing eigenvalues transitioned from representing major characteristics of the FOM solutions to minor fea-
tures that provided little additional information about the solutions around l = 70. This can be seen in Figure 6, where
the eigenvalues reached a plateau at values of O(10�11) when the dimension of the ROM basis exceeded l = 70. We note
that the first eigenvalue at l = 1 is O(105), while the plateau is reached at O(10�11). Thus, the ratio between the eigen-
values on the plateau and the first eigenvalue is O(10�16), which is on the order of machine precision. Such a plateau in
eigenvalues is generally associated with the exhaustion of viable POD basis functions, which are basis functions that,
when used to build the ROMs, increase their accuracy.

This progression of basis functions, from viable to non-viable with increasing l, is visualized by plotting the magni-
tude of several POD basis functions at their corresponding nodes on the model geometry (Figure 7). The first POD basis

FIGURE 5 (A)–(D) FOM solutions for various values of parameters βd, βm, βp at an applied internal pressure p22 = 55 kPa. The top,

middle, and bottom in each FE model correspond to the distal, mid, and proximal anatomical regions of the vagina, respectively.

FIGURE 6 Decay of the eigenvalues λ1, …, λ100 corresponding to the POD basis functions ψ1, …, ψ100, respectively.

SNYDER ET AL. 13 of 21
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function had a magnitude field, which resembled the FOM results with the greatest magnitude values concentrated in
the proximal region, the smallest magnitude values in the mid region, and slightly greater magnitude values near the
uppermost opening in the distal region (Figure 7A). In contrast, the 20th and 50th POD basis functions were character-
ized by numerous circumferential bands of varying constant magnitudes (Figure 7B,C). Finally, the 100th POD basis
function had no discernible pattern to its magnitude field (Figure 7D).

The exhaustion of viable ROM basis functions for l > 70 was confirmed by diminishing returns in relative Frobenius
norm error improvements for the G-ROM and DD-VMS-ROM. It can be seen in Figure 8 that the error for both ROM
methods asymptotically approached the theoretical performance benchmark provided by the I-ROM of relative
Frobenius norm error O(10�6) when using l > 70 ROM basis functions. Thus, additional basis functions beyond this
threshold had a negligible impact on the accuracy of the ROM approximations.

The accuracy of the DD-VMS-ROM was comparable to that of the G-ROM up to l = 10 with the relative Frobenius
norm errors of both being O(100) (Figure 8). Additional ROM basis functions above this threshold yielded substantially
lower error for the DD-VMS-ROM compared to the G-ROM, with the most pronounced improvements from the DD-

FIGURE 7 Magnitudes of (A) 1st, (B) 20th, (C) 50th, and (D) 100th POD basis functions. The top, middle, and bottom of the deformed

geometry in (A), (B), (C), and (D) correspond to the distal, mid, and proximal anatomical regions of the vagina, respectively.

FIGURE 8 Relative error measured using the Frobenius norm as a function of the dimension of the ROM basis, l.

14 of 21 SNYDER ET AL.
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VMS-ROM occurring between l = 20 and l = 40, where its error was consistently an order of magnitude smaller, with
G-ROM errors in the range from O(10�2) to O(10�3) and the DD-VMS-ROM errors ranging from O(10�3) to O(10�4).
However, the errors of the DD-VMS-ROM and the G-ROM converged and once again became comparable for l > 50.
This convergence of errors would be expected for l > 70 as the additional information from the basis functions Ψ

0
gave

the DD-VMS-ROM an advantage over the G-ROM, but only insofar as those additional basis functions contained useful
information. However, this earlier convergence of error between the ROM approaches appeared to coincide with situa-
tions where the truncated SVD solver in Algorithm 1, which determined the DD-VMS-ROM correction terms A and B,

defaulted to an optimal truncation tolerance, σ
ej� �
tol , of 1 (Figure 9). This occurred when none of the possible tolerances

σ jð Þ
tol for j = 1, …, m (as defined in Algorithm 1) produced correction terms which improved upon the G-ROM error.

Therefore, the minimum error according to Equation (27) would occur when all but one of the singular values from the
SVD of E were truncated, and the limited amount of information retained from E when solving Equation (26) generally
caused the entries of A and B to be small. Thus, with correction terms whose entries were nearly equal to 0, the DD-
VMS-ROM results were nearly identical to the G-ROM results. This suggests that our quadratic ansatz from
Equation (17) did not hold for the ROM bases for which this behavior occurred.

In contrast to Figure 8, which presents the relative Frobenius norm of the error averaged across all nodes in our
model, Figure 10 shows the relative Frobenius norm of the error at each node mapped onto the geometry of our model
to illustrate error variation by region. Snapshots were chosen from four different sets of mean preferred fiber orientation
angles, all with a luminal pressure of p22 = 55 kPa. The G-ROM, DD-VMS-ROM, and I-ROM approximations of these
snapshots were determined using a ROM basis of dimension l = 20. Disparities in the magnitudes of nodal error
between ROM approaches for these snapshots reflected those observed with the averaged error. However, the distribu-
tion of nodal error varied with the fiber orientation parameters resulting in circumferential bands of larger or smaller
error, which were unique to each set of parameters βd, βm, and βp. For instance, consider the I-ROM and G-ROM of
Figure 10C. The I-ROM had the least error in the distal region and greatest error in the mid and proximal regions as
well as around the boundary of the distal region. The G-ROM had smaller error in the region between the mid and dis-
tal regions as well as the proximal and distal boundaries, but it had larger error everywhere else. In the same fashion,
the DD-VMS-ROM in Figure 10D shows larger error in the distal and mid regions and smaller error around the proxi-
mal boundary.

In addition to analyzing the error, we recorded the total CPU time required to complete the online stages of the G-
ROM and DD-VMS-ROM simulations for comparison to the CPU time required to complete the FOM. The online stage
of our ROM simulations refers to the process of solving for ζ i and subsequently computing uROM

i for each ROM method.
The construction of the ROM basis matrices, Ψ and Ψ

0
, and other ROM quantities such as A, B, ζFOMi , and ζ i

'FOM, was
considered part of the offline stage. The ratio of ROM CPU time to FOM CPU time is referred to as the speed-up factor
(SUF) and is reported in Table 2 at 11 values of the ROM basis dimension, l, over the range l¼ 1,…,100. Initially, the
DD-VMS-ROM appeared to perform comparably to the G-ROM as both SUFs were O 106ð Þ, and, at l = 20, the DD-VMS-
ROM was even slightly faster than the G-ROM. However, as l increased it was clear that the DD-VMS-ROM was the
slower of the two methods, though not by much. For l>50, the disparity between the two methods became more pro-
nounced with the run-times for the DD-VMS-ROM increasing such that SUFs were O 105ð Þ whereas the G-ROM SUFs
consistently dropped to O 105ð Þ until l>80, at which point the G-ROM SUFs were still about half an order of magnitude
greater than those of the DD-VMS-ROM.

FIGURE 9 Optimal tolerance of the truncated SVD solver used to calculate A and B as a function of the number of bases, l.
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5 | DISCUSSION

This study presents a proof-of-concept for computational tools that employ ROMs to simulate the complex mechanical
behavior of vaginal tissue in real-time. First, we constructed FE models based on previously collected experimental data
that characterized the ex vivo biaxial response of rat vaginal tissue via inflation testing. By assuming that the vaginal tis-
sue behaved as a nonlinear anisotropic hyperelastic material using the Holzapfel-Gasser-Ogden constitutive law, we
generated FOM snapshots by changing the luminal pressure and selecting eight different parameter sets, μ1, � � �, μ8, as

FIGURE 10 Relative errors for I-ROM, G-ROM, and DD-VMS-ROM solutions calculated using a ROM basis of dimension l = 20 for

different sets of βp, βm, and βd at an equal luminal pressure of p22 = 55 kPa. The top, middle, and bottom of the deformed geometry in (A),

(B), (C), and (D) correspond to the distal, mid, and proximal anatomical regions of the vagina, respectively.
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reported in Table 1, which represented different orientations of collagen fibers across the proximal, mid, and distal
regions of the vagina. The FE data were then used to train the ROMs, with both the G-ROM and DD-VMS-ROM
approximations demonstrating exceptional online time-savings compared to the FOM (Table 2). Even for our most
expensive ROM simulations (i.e., l = 100), where the relative Frobenius norm errors of both the G-ROM and the DD-
VMS-ROM were O(10�6) (Figure 8), we achieved SUFs of O(105). Most notable, however, was the performance of the
DD-VMS-ROM for ROM bases of dimension l¼ 20,…,40. In this range, the DD-VMS-ROM had an error that ranged
from O(10�3) to O(10�4), which was consistently one order of magnitude smaller than the error for the G-ROM. Over
the same range, the DD-VMS-ROM had SUFs of O(106) and so was comparable to the G-ROM in terms of computa-
tional cost. This represents the optimal use-case for ROM bases of certain dimensions, where the DD-VMS-ROM pro-
vides superior accuracy to the G-ROM without sacrificing the speed of calculations, which is necessary for real-time
applications.

The pre-loaded ex vivo rat vagina was assumed to be a fairly simple hollow prolate spheroid with rotational symme-
try. This assumption on the geometry of the organ, with three distinct anatomical regions, provided enough complexity
to test our ROM approaches in terms of accuracy and time-savings (Figure 1). Of course, we could have reduced the
FOM and ROM computational cost further by assuming that the organ was 2-D axisymmetric rather than using a fully
3-D model. However, our goal was not to reduce computational costs for the FOM but to build a framework for the gen-
eral application of ROM to FE models with complex geometry, boundary conditions, and constitutive behavior. In other
words, the goal of this investigation was not to make a simple problem complex in order to then make it efficient again
with ROMs, but to demonstrate robustness of ROM methods for such complexity, albeit on a problem that could have
been mathematically modeled much more simply. In the future, one should build FE models of the vagina with geome-
try and boundary conditions that better replicate the in vivo conditions of the organ. Indeed, it is well known that the
vaginal canal is not axisymmetric and, within the pelvic floors, it is subjected to forces exerted by the surrounding con-
nective tissues and intra-abdominal pressure.

Together with a realistic geometry, boundary and loading conditions, a new constitutive law that accounts for the
experimentally measured statistical distributions of collagen fibers32 and smooth muscle fibers44 should be developed
for the rat vagina. The specific form of the Holzapfel-Gasser-Ogden constitutive model used in this study does not con-
sider the exact distributions of such fibers in the rat vagina. However, despite this and other limitations (e.g., neglected
contribution of compressed fibers), we elected to adopt this well-established model in biomechanics since it is already
in the constitutive library of Abaqus and, thus, can be easily implemented by other researchers working in reproductive
biomechanics. We acknowledge that more advanced constitutive formulations should be employed to account for the
contribution of the dispersed fibers within the vaginal tissue. For example, one could define the strain energy density
by introducing a statistical distribution of collagen and smooth muscle fibers, the undulation of such fibers, and the
interaction of the fibers with the surrounding matrix.45 However, this approach requires expensive numerical integra-
tions. One notable and alternative approach that preserves the computational efficiency of the Holzapfel-Gasser-Ogden

TABLE 2 SUFs for G-ROM and DD-VMS-ROM at l = 1, …, 100 in intervals of 10

Speed-up Factor

l G-ROM DD-VMS-ROM

l = 1 4.46 � 106 3.44 � 106

l = 10 4.04 � 106 1.53 � 106

l = 20 3.05 � 106 4.03 � 106

l = 30 2.72 � 106 2.13 � 106

l = 40 2.33 � 106 1.62 � 106

l = 50 1.31 � 106 1.01 � 106

l = 60 1.26 � 106 7.16 � 105

l = 70 1.10 � 106 4.91 � 105

l = 80 1.03 � 106 4.48 � 105

l = 90 8.98 � 105 3.32 � 105

l = 100 7.96 � 105 2.39 � 105
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constitutive model consists in defining an energy density function that depends not only on the average value of the
pseudo-invariant I4 ααð Þ but also on the variance of the same pseudo-invariant.46,47 Moreover, future constitutive models
should also capture the mechanical response of the vagina in the both the relaxed and contracted states.48–50

The material parameters in the Holzapfel-Gasser-Ogden constitutive model were chosen such that the average
pressure-strain curves in the hoop and axial directions were within the range of those that we computed experimentally
(Figure 2). During our inflation experiments,31 the strains were calculated in the mid region of the rat vagina using the
digital image correlation method. For consistence, the average pressure-strain relations that were derived from the FE
simulations were relative to the mid region of the modeled organ. For this reason, the selected parameters, especially
those that describe the collagen fiber organization of the vagina in the proximal and distal regions, may not be adequate
to capture the mechanical behavior of the entire rat vagina. Because of the variation in the collagen fiber organization
in the three main anatomical regions of the organ,32 we decided to generate various FE simulations by varying the pre-
ferred mean fiber orientations defined by βd, βm, and βp. Ideally, one should employ inverse FE methods to select the
parameter space that matches the experimentally measured displacement field of the rat vagina and, subsequently, cre-
ate the snapshots in such space for the ROM. Nevertheless, our findings still show the potential of G-ROM and DD-
VMS-ROM to provide much faster descriptions of the rat vaginal deformation.

We constructed our G-ROM and DD-VMS ROM using as snapshots the solutions of FE simulations that were
obtained for different parameter values (i.e., pi, βp, βm, and βd) (Figures 4 and 5). Since we used commercial software,
the last iterations of the Newton–Raphson method that provided the final solutions were selected to generate such
snapshots. However, other methods such as the discrete empirical interpolation method and its variants30 can be
employed to generate ROM directly from the nonlinear system of equations that characterize the mechanical behavior
of soft tissues. Though we acknowledge that the construction of the snapshots represents a limitation of our study, we
believe that our implementation of G-ROM and DD-VMS ROM starting from data obtained from commercial FE soft-
ware package may allow more users, regardless of their level of expertise in nonlinear FE, to adopt ROM methods.

Both the G-ROM and the DD-VMS-ROM were constructed using ROM bases of dimension l = 1, …, 100. The choice
to have l = 100 be the maximum dimension of the ROM basis was made using the results for eigenvalue decay reported
in Figure 6. In particular, at l = 100 we observed a substantial decrease in the eigenvalues, with values below O(10�11).
From this behavior, we were able to infer that the exhaustion of viable POD basis functions occurred somewhere in the
range of l = 65, …, 100. This was confirmed a posteriori by the relative Frobenius norm error results (Figure 8). While
this method of choosing a maximum l by observing eigenvalue decay and confirming exhaustion of modes via ROM
error results is effective, ideally one should be able select the viable number of modes without such computations. Hav-
ing this knowledge would minimize the computational time spent on discarding non-viable modes, especially at higher
values of l for which the offline computational cost of constructing ROMs is high. One alternative approach for choos-
ing the maximum l is to measure the RIC index defined in Equation (9) as l increased. Following this approach, one
usually sets a tolerance close to 1 (e.g., .9999) and considers the maximum l for which the RIC index exceeds this toler-
ance. However, choosing an appropriate RIC tolerance is not trivial. In our case, when we attempted to follow this
approach, the RIC index exceeded a tolerance of .9999 at l = 5. Since our viable basis functions were not considered
exhausted until l > 70 and the relative Frobenius norm error of our ROMs improved by 6 orders of magnitude between
l = 5 and the threshold of exhaustion, we concluded that the quality of our ROM approximations was dependent on the
lower energy POD modes. We could have set the tolerance closer to 1 to achieve results consistent with the eigenvalue
decay method, but that would have been just as arbitrary as making an inference based on eigenvalue decay. Thus, in
cases like ours, the RIC index method for the selection of the maximum l may not be preferable over the eigenvalue
decay method.

In this study, we elected to apply our ROMs solely to reproduce our training data with reasonable accuracy at
reduced computational cost. We acknowledge, however, that ROMs can be used to make predictions, using the sub-
space spanned by ROM basis functions to interpolate or extrapolate the behavior of a FOM that is not included in the
training data. For example, Niroomandi et al.23 used both Grassman manifold fitting and POD with FE piecewise linear
interpolation to precompute ROM bases for a set of “most probable” load states and interpolate to new load states using
the nearest precomputed states. Pfaller et al.20 similarly employed the subspace interpolation via Grassmann manifolds
and direct basis interpolation, but also considered weighted concatenation methods for both the POD bases and snap-
shots at different parameters. Additionally, they applied these subspace interpolation methods to gradient-based inverse
analysis, using parametric ROMs as a less computationally expensive alternative to the inverse FE method. Given that
our current FOM essentially produces load state snapshot matrices for 8 different parameter sets, subspace interpolation
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and the parametric ROM inverse analysis methods could certainly be applied. As our work advances, we intend to
implement these and similar methods to develop predictive ROMs of vaginal tissue.

Our long-term goal is to develop real-time computational tools that can be used to predict the large deformations of
the human vagina in pregnant women. Clearly, the results presented here, both for the FE and ROM, are only captur-
ing the deformations of the rat vagina in simplified ex-vivo settings and, for this reason, their relevance to in-vivo
human vagina remains questionable. Evaluating the mechanical properties of the human vaginal tissue in vivo is
unethical, especially during pregnancy, since it poses health risks to both the mothers and their babies. For this reason,
new computational models, with advanced algorithms, must be developed to assess the deformations of this reproduc-
tive organ in real-time by accounting for the differences in material properties, boundary conditions, and geometries of
the organ between humans and rodents (or other species).

6 | CONCLUSIONS

This computational work leveraged experimental data to develop and validate a FE model of rat vaginal tissue under
inflation and leveraged ROM techniques to approximate the results of FE simulations. Specifically, we used the com-
mercial software, Abaqus, to construct the FE model and collect snapshots from the FE simulations across eight differ-
ent collagen fiber distributions, each at 30 load conditions. With these data, we implemented two projection-based
ROMs, the standard G-ROM and the DD-VMS-ROM, showing that the DD-VMS-ROM can improve accuracy with a
DD correction term for discarded modes. Using these ROMs, we produced approximations of our FE snapshots at a sig-
nificantly reduced computational cost. To our knowledge, we are the first to implement the DD-VMS-ROM to approxi-
mate the mechanical behavior of anisotropic nonlinear elastic soft biological tissues.

We compared the performance of the approximations produced by each ROM in terms of their accuracy and time-
savings relative to the FOM. We observed substantial time-savings with both ROM approaches with online simulations
that were O(106) times faster than the FOM for both G-ROM and DD-VMS-ROM for ROM bases up to dimension
l = 50. The ROMs would reduce in speed gradually with increasing ROM basis dimension to O(105) at l > 80 for the G-
ROM and l > 50 for the DD-VMS-ROM. While both approaches achieved approximations with Frobenius norm error O
(10�6) relative to the FOM with l > 70, within the range l = 20, …, 40, the DD-VMS-ROM outperformed the G-ROM in
terms of error by an order magnitude with G-ROM errors ranging from O(10�2) to O(10�3) compared to the DD-VMS-
ROM errors, which ranged from O(10�3) to O(10�4). Over the same range of ROM basis dimensions, the two
approaches were comparable in terms of speed (both O(106) times faster than the FOM), indicating a valuable use-case
for the DD-VMS-ROM.

Our findings suggest that the ROM approaches employed here are capable of achieving exceptional accuracy when
modeling vaginal tissue with nonlinear material properties. Given the success of this proof-of-concept, in future work
we plan to investigate the potential for these techniques to approximate models of the vagina with more complex geom-
etries and realistic boundary conditions that better reflect the in vivo conditions of the organ. In addition, we found that
the DD-VMS-ROM can approximate the FOM with superior accuracy to the standard G-ROM while achieving a compa-
rable reduction in computational cost. These results are promising for the application of ROMs to computational tools
for real-time simulation of childbirth, which would aid obstetricians in recommending a preferred mode of delivery.
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