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Abstract A constitutive model is proposed for the
description of the tensile properties of medial collat-
eral ligaments (MCLs). The model can reproduce the
three regions – the toe region, the linear region, and the
failure region – of the stress–stretch curve of ligamen-
tous tissues. The collagen fibers are assumed to be the
only load-bearing component of the tissues. They are
all oriented along the physiological loading direction of
the ligament. They are crimped in the slack configu-
ration and are unable to sustain load. After becoming
taut and before failing, each collagen fiber exhibits a lin-
ear elastic behavior. The fiber straightening and failure
processes are defined stochastically by means of Weibull
distributions. Published experimental data for the MCLs
are employed to validate the constitutive relationship.
Finally, the constitutive model is generalized in order to
describe the three-dimensional mechanical behavior of
the ligaments by following the structural approach.
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1 Introduction

Ligaments are connective tissues that consist of collagen
and elastin embedded in a ground substance of water,
proteoglycans, glycolipids, and fibroblasts. Collagen is
the main load carrying component in ligamentous tis-
sues. It is the most abundant protein constituting 65–80%
of the ligament dry weight (Amiel et al. 1990). In par-
allel-fibered tissues, such as ligament, collagen is char-
acterized by a hierarchal structure: collagen molecules
are packed together to form collagen fibrils, collagen
fibrils aggregate to form collagen fibers, and collagen
fibers are arranged in fascicles that run parallel to the
ligament loading direction (Kastelic et al. 1978).

Among the ligaments of the human body, the liga-
ments of the knee joint have been extensively studied by
the biomechanics community due to the joint’s elevated
vulnerability. The medial collateral ligament (MCL) is
the focus of the present study since it, together with the
anterior cruciate ligament (ACL), is most prone to inju-
ries (Bollen 2000). Injuries to the ligaments are classified
according to their severity as first-, second-, and third-
degree sprains. With a first-degree sprain, the ligament
is only overstretched. A second-degree sprain occurs
when the ligament is partially torn while a third-degree
sprain consists of a complete rupture of the ligament.
Understanding the mechanism of tearing in ligamentous
materials is important for the prevention, the diagnosis,
and the treatment of the injuries. Toward this end, exper-
imental investigations complemented with reliable con-
stitutive descriptions are needed to study the disruption
of the ligamentous fibers associated with the injuries.

Progress in experimental mechanics has significantly
contributed to characterize the mechanics of the liga-
ments. Nevertheless, difficulties persist in studying
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experimentally the failure behavior of the ligamentous
tissue. Therefore, constitutive equations are needed to
enhance our understanding of the mechanisms of liga-
mentous injuries and to guide the design of opportune
experiments. Particularly, structural constitutive models
can help in clarifying the relation between the biological
architecture and the mechanical failure behavior of the
tissues. These models are derived by modeling the tis-
sue’s components, their geometry, and their interactions
and, hence, their material parameters are directly re-
lated to the tissue’s structure. Although many structural
models have been proposed for the description of the
mechanics of collagenous tissues (Viidik 1969; Diamant
et al. 1972; Stouffer et al. 1985; Comninou and Yannas
1976; Decraemer et al. 1980; Kastelic et al. 1980; Lanir
1979, 1983; Zioupos and Barbenel 1994; Humphrey and
Yin 1997; Sacks 2000; De Vita and Slaughter 2006), only
few models have been formulated to illustrate the failure
process in these tissues (Kwan and Woo 1989; Hurschler
et al. 1997; Liao and Belkoff 1999; Wren and Carter
1998).

To the authors’ knowledge, the first attempt at mod-
eling failure in parallel-fibered collagenous tissues was
made by Kwan and Woo (1989). They developed a one-
dimensional microstructural model in which collagen
fibrils were assumed to be responsible for the gross non-
linear response of the tissue. In their model, the tissue
was considered to be composed of finite groups of fib-
rils with different uncrimping strains and failure strains.
The stress–strain relationship for the collagen fibril was
assumed to be bilinear. The model was fitted to rabbit
ACL and canine MCL experimental data but 11 param-
eters were needed.

The most complete theoretical description of fail-
ure for ligaments and tendons has been presented by
Hurschler et al. (1997). Their constitutive law was for-
mulated by modeling the ground substance, the colla-
gen fiber and fibril structures. The tissue stress–stretch
relationship was defined by considering the sequential
uncrimping and stretching of collagen fibers. The fiber
recruitment process was defined by a one-sided distribu-
tion. Interestingly, by following the structural approach
developed by Lanir (1979) the constitutive law for an
individual fiber was assumed to be determined by the
fibril kinematics and spatial orientation. The ground
substance, or matrix, was assumed to contribute to the
gross mechanical behavior through a hydrostatic pres-
sure term. Stretch-based failure criteria were introduced
in the model at the fibril level for disorganized tissue
and at the fiber level for parallel-fibered tissues. In both
cases, the failure stretch was assumed to be equal for
all fibrils or for all the straight fibers. The constitutive

relation was simplified in order to curve fit failure exper-
imental data of healing rat MCLs.

In a follow-up study, Liao and Belkoff (1999) pre-
sented a failure model for the tensile properties of lig-
aments that incorporates the gradual recruitment and
stretching of collagen fibers. Differently from Hurschler
et al. (1997), the fiber recruitment was described by a
two-sided distribution and, therefore, some fibers could
unrealistically become straight at a negative stretch.
Each collagen fiber was assumed to be linear elastic and
to fail at the same stretch in the taut configuration. This
model has the merit of containing only four structural
parameters. Although the model was found to describe
well the abrupt failure behavior observed in experimen-
tal studies on rabbit MCLs, it could not reproduce the
gradual failure behavior also observed in such studies.

Wren and Carter (1998) proposed a structural law for
the tensile constitutive prefailure and failure behavior of
soft skeletal connective tissues. The mathematical model
accounted not only for the collagen fiber uncrimping,
stretching, breakage, orientation, and volume fraction as
the above-cited models (Kwan and Woo 1989; Hurschler
et al. 1997; Liao and Belkoff 1999) but also for matrix
constitutive behavior and its resistance to fiber reorien-
tation. Experimental data from tendon, meniscus, and
articular cartilage were used to validate the model. The
values of the many structural parameters, which appear
in the model, were extrapolated from different exper-
imental data sets to simulate the experimental stress–
strain curves.

In this study, a novel structural constitutive model is
formulated to describe the tensile failure behavior of
ligaments under the assumption that, after losing their
waviness, the collagen fibers fail at different stretches.
Five structural parameters are needed to reproduce the
response of the ligaments exhibited during tensile tests.
The model is validated by using published stress–strain
data for the MCL, and it is compared to a similar constit-
utive model which is based on the common assumption
that all straight fibers in the tissue fail at an identical
stretch. Although a three-dimensional model is also pro-
posed by following the approach proposed by Lanir
(1979, 1983), it is not validated due to the lack of multi-
axial histo-mechanical data for ligaments.

2 Model formulation

A one-dimensional model is first presented to describe
the tensile prefailure and failure behavior of ligaments
in Sect. 2.1. The ligament is idealized as composed of
collagen fibers that are aligned along its direction of



A constitutive law for the failure behavior of medial collateral ligaments 191

physiological loading. Elastin is assumed not to con-
tribute to the mechanical behavior since its amount
is not significant. The collagen fibers are assumed to
be linear elastic and possess the same stiffness. They
contribute to the ligament’s mechanical response after
becoming taut and before breaking. The fiber bending
and compressive stiffnesses are ignored as well as fiber–
fiber and matrix–fiber interactions. Moreover, viscous
effects are not taken into account. The failure criterion
is stretch based but, differently from previous studies
(Hurschler et al. 1997; Wren and Carter 1998; Liao and
Belkoff 1999), the taut fibers in the tissue are postulated
to break at different stretches. Both the fiber straight-
ening and fiber breakage are statistically defined by
Weibull cumulative distributions. Subsequently, a gen-
eral three-dimensional material law is proposed in Sect.
2.2 by following Lanir’s pioneering work in soft tissue’s
structural constitutive modeling (Lanir 1979, 1983).

2.1 Recruitment and failure model

The mechanical response of MCL to tensile loading is
assumed to be determined solely by the collagen com-
ponent. In particular, the ligament is modeled by N par-
allel collagen fibers, where N is a positive integer that is
large enough for the model to be statistically represen-
tative of the real system. The fibers are assumed to be
all aligned along the main physiological loading direc-
tion of the ligament. They are characterized by having
different straightening and failure stretches.

Let i be an integer with i = 1, . . . , N. The generic col-
lagen fiber i of the ligament has a straightening stretch,
�

(i)
s , which is the stretch at which the fiber becomes

straight, and a failure stretch, �(i)
f , which is the stretch at

which the fiber fails after becoming straight (see Fig. 1).
The straightening and failure stretches for the N fibers
are randomly defined according to Weibull distribu-
tions. They are numerically generated by transforming
uniform deviates, which are random numbers between
0 and 1, into Weibull distributed random numbers by
invoking the fundamental transformation law of proba-
bilities as described in detail by Press et al. (1992). Thus,
let G(i)

s and G(i)
f denote uniform deviates. The straight-

ening and failure stretches of the collagen fibers are
determined by using the following relationships

�
(i)
s = 1 + βs[− ln(1 − G(i)

s )]1/αs ,

�
(i)
f = 1 + βf[− ln(1 − G(i)

f )]1/αf , (1)

where αs > 0 and βs > 0 are the shape and scale param-
eters of the Weibull distribution describing the fiber
straightening and αf > 0 and βf > 0 are the shape and
scale parameters of the Weibull distribution governing

the fiber failure. It needs to be noted that the location
parameters of the Weibull distributions (1) are set to be
equal to 1 since the fibers are assumed to be all undu-
lated in the reference configuration and not to break
before becoming straight (see Fig. 2).

Let σ (i) denote the stress associated with a generic
fiber i and let � denote the ligament’s stretch. Then,
�/�

(i)
s is the fiber’s stretch relative to the taut configu-

ration. The stress for a generic fiber i is defined as follows

σ (i)(�, �(i)
s , �(i)

f ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if �

�
(i)
s

≤ 1 ;

K
(

�

�
(i)
s

− 1
)

if 1 < �

�
(i)
s

< �
(i)
f ;

0 if �

�
(i)
s

≥ �
(i)
f ,

(2)

where K is the fiber stiffness that is equal for all fibers
comprising the ligament. Relation (2) defines the con-
stitutive relation for each fiber i. It states that the stress
for the fiber i is zero when �/�

(i)
s ≤ 1. In this case,

the fiber is undulated since the ligament’s stretch is
smaller than or equal to the fiber’s straightening stretch.
The stress for the fiber i is modeled as a linear elas-
tic material when 1 < �/�

(i)
s < �

(i)
f . In this case, the

ligament’s stretch is greater than the fiber’s straighten-
ing stretch but smaller than the fiber’s failure stretch.
In other words, since the fiber i is taut when the liga-
ment is stretched of the amount �, it produces stress
before breaking. Finally, the stress for the fiber i is zero
when �/�

(i)
s ≥ �

(i)
f , i.e. when the straight fiber i ex-

ceeds its critical failure stretch. Moreover, it needs to be
emphasized that the fiber can only rupture after losing
its crimped morphology, i.e. when �/�

(i)
s > 1.

For i = 1, . . . , N, the stress σ (i) of the fiber i with asso-
ciate �

(i)
s and �

(i)
f , is computed by means of relation (2).

Then, the overall stress of the ligament, σ , is defined as
the average of the stresses for the N collagen fibers by

σ(�) = 1
N

N∑

i=1

σ (i)(�, �(i)
s , �(i)

f ) . (3)

In conclusion, the uniaxial stress–stretch relationship
σ(�) for the ligament is numerically defined by Eqs. 1–3.
Therefore, a set of five material parameters, {K, αs, βs,
αf, βf}, needs to be determined by fitting experimental
curves of σ versus �.

2.2 Model generalization

The one-dimensional model proposed in Sect. 2.1 can be
generalized in order to describe the three-dimensional
mechanical behavior of ligaments by using Lanir’s struc-
tural approach for soft tissues (Lanir 1979, 1983). The
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Fig. 1 �
(i)
s : straightening fiber stretch, �

(i)
f : failure fiber stretch

Fig. 2 Assumption of the
recruitment and failure model

first Piola–Kirchhoff stress tensor P can be expressed as
(Truesdell and Noll 1965)

P = −pF−T + 2F · ∂W(C)

∂C
, (4)

where ‘·’ denotes the dot product, p is an indeterminate
pressure enforcing the incompressibility assumption, F
is the deformation gradient tensor, FT and F−T are its
transpose and inverse transpose, respectively, and C ≡
FT · F is the right Cauchy–Green deformation tensor.
The choice of C as a measure of the deformation guaran-
tees that the principle of frame indifference is satisfied.
W = W(C) is the elastic potential that is defined as
follows (Lanir 1979, 1983)

W(C) =
∫

�

R(M̂)w(�(C, M̂)) d� , (5)

where � is the set of all material directions in the ref-
erence configuration, M̂ is an arbitrary material direc-
tion in �, R(M̂) is the probability density function for
collagen fibers to be aligned in the direction M̂, and
w(�(C, M̂) is the elastic potential of collagen fibers in
the direction M̂ determined by the axial fiber stretch

�(C, M̂) =
√

M̂ · C · M̂ . (6)

According to Eq. 6, the stretch of each fiber � along its
mean axis M̂ is derived from an affine transformation of
the overall tissue’s strain C.

After defining the fiber elastic stress σ(�) as

σ(�) ≡ dw(�)

d�
, (7)

the constitutive equation (4) takes the form

P = −pF−T + F ·
∫

�

R(M̂)
M̂M̂

�(C, M̂)
σ (�(C, M̂))d� .

(8)

Given the collagen fiber distribution R(M̂) and the fiber
stress–stretch relation σ(�) defined by Eqs. 1–3, the
constitutive law (8) defines the multiaxial mechanical
response of the ligamentous material.

The three-dimensional model (8) can be reduced to
the one-dimensional model (1)–(3) under certain
assumptions. Assume that the ligament undergoes an
isochoric axisymmetric deformation defined by the fol-
lowing deformation gradient

F = λ−1/2erER + λ−1/2eθE	 + λezEZ , (9)

where λ is the axial stretch, {ER, E	, EZ} and {er, eθ , ez}
are orthonormal bases such that EZ and ez are unit vec-
tors parallel to the direction of physiological loading
of the ligament in the reference and current configu-
rations, respectively. Consequently, the right Cauchy–
Green deformation tensor is given by

C = λ−1ERER + λ−1E	E	 + λ2EZEZ . (10)

Moreover, assume that collagen fibers are perfectly par-
allel to the direction of loading so that R(M̂) = δ(M̂ −
EZ) where δ is the Dirac-delta function. It then follows
from Eqs. 6–10 that the nonzero components of the first
Piola–Kirchhoff stress are

PrR = Pθ	 = −pλ1/2 , PzZ = −pλ−1 + σ(λ) . (11)



A constitutive law for the failure behavior of medial collateral ligaments 193

Because of the traction-free boundary condition on the
lateral surface of the ligament, the indeterminate pres-
sure term p assumes zero value. One then obtains that
the only nonzero component of the stress, PzZ, reduces
to the axial fiber stress, σ , defined by Eqs. 1–3.

3 Results

The constitutive model defined by Eqs. 1–3 for the tensile
behavior of MCLs has been numerically implemented in
order to estimate its ability to reproduce experimental
observations. Toward this end, the number N of the col-
lagen fibers that form the ligament has been chosen to
be equal to 10, 000 since no significant differences have
been found by increasing such number. It needs to be
noted that this number does not represent the effective
number of fibers which occupy the ligamentous sub-
stance. Indeed, in the numerical implementation of the
model, the number N can be increased without observ-
ing differences in the value of the stress σ defined by
Eq. 3.

The random straightening and failure stretches of
the collagen fibers, �

(i)
s and �

(i)
f given by Eq. 1, have

been numerically generated by transforming the uni-
form deviates, G(i)

s and G(i)
f , into Weibull distributed

deviates as indicated in Press et al. (1992). The uni-
form deviates are computed by using Park and Miller’s
Minimal Standard generator with an additional shuffle
(Park and Miller 1988). Subsequently, given the liga-
ment’s stretch �, the computation of the stress σ (i) for
each fiber i, which is individuated by �

(i)
s and �

(i)
f , is

achieved by implementing relation (2). Once the stresses
σ (i) with i = 1, . . . , N are obtained, the total stress of the
ligament σ as a function of � is calculated by using Eq.
3. Moreover, the fractions of crimped, straight, and bro-
ken fibers at a fixed value of the tissue’s stretch � can
be readily estimated by placing counters in relation (2).

The set of material parameters {K, αs, βs , αf, βf} that
appear in the model has been identified by minimizing
the sum of squares difference between experimental and
theoretical stresses using the Downhill Simplex Method
(Nelder and Mead 1965; Press et al. 1992). This method
permits the evaluation of the minimum of a function
with several independent variables without requiring
the computation of its derivatives.

The MCL tensile test data published by Abramowitch
et al. (2003) and by Provenzano et al. (2002a) have
been employed to test the proposed constitutive model.
Abramowitch et al. (2003) have performed uniaxial ten-
sile tests on femur–MCL–tibia complexes to evaluate
the goat as animal model for studying the MCL healing

process. They have reported a typical stress–strain data
that shows the MCL tearing and complete failure. These
data are well fitted by the presented model as Fig. 3 illus-
trates. The model is able to describe the toe region, the
linear region and, most importantly, the failure region
of the stress–strain curve. The values of the parame-
ters have been found to be K = 460 MPa, αs = 1.74,
βs = 0.02, αf = 8.10, and βs = 0.18 (R2 = 0.99). In Fig.
3, the fractions of taut fibers and the fractions of broken
fibers are also depicted.

As mentioned earlier, a common assumption in pre-
vious works on modeling failure in soft tissues is that the
fibers, which comprise the tissues, have an identical fail-
ure stretch, defined relatively to the taut configuration
(Hurschler et al. 1997; Wren and Carter 1998; Liao and
Belkoff 1999). By invoking this assumption, the single
fiber stress takes the following form

σ (i)(�, �(i)
s , �(i)

f ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if �

�
(i)
s

≤ 1 ;

K
(

�

�
(i)
s

− 1
)

if 1 < �

�
(i)
s

< �f ;

0 if �

�
(i)
s

≥ �f ,

(12)

where �f is the failure fiber stretch with respect to the
taut configuration and the other quantities appearing in
Eq. 12 are defined as before (Sect. 2.1).

The proposed constitutive model is compared with a
constitutive model defined by Eqs. 1, 3, and 12. It is note-
worthy that, to simulate the disruption of the ligament,
two parameters, αf and βf, are needed to randomly gen-
erate the failure fiber stretches, �(i)

f , in the model (1)–(3)
whereas one parameter, �f, is needed to define the fail-
ure fiber stretch in the model (1), (3), and (12).

Figure 4 presents the comparison between the curve
fittings of the models described by Eqs. 1–3 and by Eqs.
1, 3, and 12. The four best fitting parameters for the lat-
ter model have been determined to be K = 716 MPa,
αs = 0.89, βs = 0.07, �f = 1.16 (R2 = 0.98). As Fig. 4
shows, the newly proposed model can fit the data better
than the four parameter model (1), (3), and (12).

Provenzano et al. (2002a) have conducted an experi-
mental study to analyze the subfailure damage in
ligament. In their study, they have subjected rat femur–
MCL–tibia complexes to tensile tests in order to mea-
sure the mechanical properties of the ligament before
and after applying subfailure stretches. A good agree-
ment has been found between the proposed model and
the experimental data obtained from one ligament–bone
complex. Figure 5 displays the curve fitting of the model
with the experimental data, the fractions of straight
fibers and the fractions of broken fibers. The material



194 R. De Vita, W. S. Slaughter

Fig. 3 Stress–strain
experimental data from
Abramowitch et al. (2003)
(blue filled circle) with model
fit (blue continuous line),
fractions of straight fibers (red
continuous line), and fractions
of broken fibers (red dashed
line)

parameters have been estimated to be K = 1, 345 MPa,
αs = 1, βs = 0.03, αf = 2.47, and βs = 0.12 (R2 = 0.99).

The constitutive model (1), (3), and (12) has also been
fitted to the experimental data published by Provenzano
et al. (2002a). In Fig. 6, the curve fitting is compared with
the curve fitting obtained by using the newly proposed
constitutive law. The value of the four material parame-
ters, {K, αs, βs , �f}, embodied in the model (1), (3), and
(12) could not be uniquely determined. As evidenced
by the results in Fig. 6, the proposed model reproduces
better the MCL experimental stress–stretch curve.

4 Discussion

A novel structural constitutive model for the description
of the tensile behavior of knee ligaments is presented.
The model is formulated by assuming that the ligament
is composed of undulated collagen fibers that straighten
out upon stretching. They are assumed to bear load only
after losing their waviness and until they rupture. The
recruitment and the disruption of collagen fibers are
defined by statistical distributions. Differently from pre-
vious models (Hurschler et al. 1997; Wren and Carter
1998; Liao and Belkoff 1999), the straight fibers are as-
sumed to fail at different failure stretches. The model
is able to properly reproduce the toe region, the lin-
ear region, and the failure region of stress–strain curves
of MCLs reported in published experimental studies
(Abramowitch et al. 2003; Provenzano et al. 2002a).
Furthermore, an extension to a three-dimensional mate-
rial law is formulated within the context of structural
mechanics for soft tissues (Lanir 1979, 1983).

Fig. 4 Stress–strain experimental data from Abramowitch et al.
(2003) (blue filled circle) with five parameter model fit (blue con-
tinuous line) and four parameter model fit (continuous line)

The good agreement between the proposed constit-
utive model and the uniaxial experimental data pub-
lished by Abramowitch et al. (2003) and Provenzano
et al. (2002a) confirms the utility of the model in describ-
ing the process leading to partial and complete rupture
of ligamentous tissues. The five parameters, which ap-
pear in the model, are sufficient to illustrate the tensile
behavior of these tissues. Since the model is structurally
based, these parameters provide insight into the rela-
tion between the histology and the mechanics of the
tissues. The estimated stiffness constants of the collagen
fiber for the goat and rat MCLs are within the stiffness
range reported in the biomechanical literature (Sasaki
and Odajima 1996; Fung 1993; Liao and Belkoff 1999).
The remaining parameters permit the determination of
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Fig. 5 Stress–strain
experimental data from
Provenzano et al. (2002a)
(blue filled circle) with model
fit (blue continuous line),
fractions of straight fibers (red
continuous line), and fractions
of broken fibers (red dashed
line)

the percentages of taut and broken fibers at each value
of the tissue’s stretch.

The tensile properties of the goat MCL are related
to the recruitment and failure of collagen fibers in Fig.
3. It can be seen that the percentage of straight fibers
increases gradually with stretch in the toe region of the
stress–stretch curve. The fibers are taut and contribute
to the overall tissue’s stress in the linear region of the
curve. Finally, the ligament is torn when 46% of the col-
lagen fibers fail as shown in Fig. 3.

The rat MCL stress–stretch data reported by
Provenzano et al. (2002a) are characterized by the ab-
sence of a distinct linear region (see Fig. 5). For this rea-
son, the constitutive model predicts that the ligament
experiences a complete rupture when 96% of the col-
lagen fibers are recruited to bear load and 35% of such
fibers fail. This suggests that some collagen fibers remain
crimped when the ligament breaks.

The stress of the MCLs exhibited either an abrupt or
a gradual drop in the failure region of the stress–strain
experimental data. The cause of the different shapes of
the stress–stretch curves is unclear and can be ascribed
to numerous factors that include experimental method-
ologies and animal model age, species, and sex. Liao
and Belkoff (1999) speculated that this difference in the
failure regime is age related. In their study on rabbits,
they found that the 4-month-old MCLs exhibit a pro-
longed failure region whereas the 7-month-old MCLs
exhibit an abrupt failure region. It needs to be noted
that the model presented herein is well suited to repro-
duce the MCL stress–stretch curves where the failure
region appears to be gradual. However, when the MCL
fails abruptly, the lack of a gradual failure region in the

Fig. 6 Stress–strain experimental data from Provenzano et al.
(2002a) (blue filled circle) with five parameter model fit (blue con-
tinuous line) and four parameter model fit (continuous line)

stress–stretch curve does not allow one to determine
the parameters in the Weibull cumulative distribution
describing the failure process.

The proposed model provides a better fit to the exper-
imental data than the model formulated by assuming
that the straight fibers in the ligamentous specimen have
an identical failure stretch (see Figs. 4, 6). It needs to be
noted that the model presented herein is akin to the
model proposed by Wren and Carter (1998) in the defi-
nitions of fiber stress and the tissue’s stress. In their
formulation, soft tissues are viewed as composite mate-
rials in which both the fibers and the ground substance
are assumed to contribute to the tissues’ mechanical re-
sponse. Moreover, these investigators introduced into
their model the fiber volume fraction, the fiber ori-
entation, and the resistance of the ground substance
to the fiber reorientation. However, the values of the
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parameters in the model were inferred from different
experimental studies in order to simulate the nonlin-
ear stress–strain relationship of soft skeletal connective
tissues.

Recent studies have revealed that the crimp period
of collagen fibrils in rabbit MCLs is location depen-
dent (Kukreti and Belkoff 2000). These inhomogenei-
ties seem to suggest that the gross constitutive behavior
of these ligaments must be derived by taking into con-
sideration their fibrilar structure. Hurschler et al. (1997)
developed a model for ligaments and tendons incorpo-
rating the structure of the tissues both at the fiber level
and at the fibril level. However, their model could not
be completely validated since the microstructural infor-
mation, which is required for the determination of the
material parameters, was not available.

In order to account for the anisotropic material behav-
ior of MCLs, a three-dimensional model is also for-
mulated. The one-dimensional model is generalized by
adopting Lanir (1979, 1983) structural approach. The
anisotropy of the tissue is modeled by introducing a
statistical distribution for the collagen fiber orientation.
However, the three-dimensional constitutive model is
not validated since multiaxial mechanical tests comple-
mented with quantification of the collagen fiber orien-
tation are needed.

The MCLs exhibit short- and long-time memory ef-
fects that must be considered when modeling their
mechanics during physiological activities. Recently,
experimental studies have demonstrated that the quasi-
linear viscoelastic theory proposed by Fung (1993), which
has been widely used in biomechanics, is inadequate to
describe the nonlinear properties of rat MCLs (Proven-
zano et al. 2001). To account for the experimentally
observed nonlinear viscoelasticity of ligamentous tis-
sues, Provenzano et al. (2002b) have proposed phe-
nomenological models such as the nonlinear theory of
Schapery (1969) and the modified superposition method
(Findley et al. 1976). However, since the morphologi-
cal changes that occur during creep and relaxation phe-
nomena are different (Fung 1993; Thornton et al. 2000),
it is believed that structurally based constitutive laws
hold great promise in simulating the viscoelastic re-
sponse of ligaments under different loading conditions.
For this reason, in the future the proposed structural
model will be modified to incorporate the description of
the time- and history-dependent mechanical properties
of ligaments.

While the model suggests that the collagen fiber alone
is responsible for the mechanical behavior of the liga-
mentous tissue, it does not address other factors which
may help to determine the failure properties of these tis-
sues. The fluid-dominated ground substance influences

the mechanics of the ligaments. However, little is known
about its role in the failure mechanisms. Furthermore,
because the stress–strain curves of the rat MCLs have
been observed to change after a critical subfailure
stretch along their directions of physiological loading
(Provenzano et al. 2002a), it is speculated that damage
of individual collagen fiber occurs during injury. A struc-
tural constitutive model, which accounts for damage of
knee ligaments, will be the focus of future research.
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